Skip to main content
Log in

Synthesis of g-C3N4/ZnO nanostructures via mechano-thermal method for photocatalytic degradation of methylene blue dye

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The g-C3N4/ZnO hybrid nanostructures were prepared by a facile mechano-thermal method and the structural characteristics of the prepared nanomaterials were investigated by employing XRD, FTIR, UV–Vis, FESEM, BET, and EDS analytical techniques. The N2 sorption isotherm revealed that g-C3N4/ZnO nanoheterostructures have a specific surface area of 10.856 m2/g and a pure volume of 0.0409 cc/g, and mesoporosity. The photocatalytic ability of the obtained photocatalysts was analyzed for the degradation of MB dye under visible light illumination. The degradation of MB dye was found to be significantly influenced by the dopant amount of ZnO in g-C3N4, initial MB concentration, solution pH, and catalyst quantity. The photocatalytic performance of the all-prepared hybrid g-C3N4/ZnO nanostructures is determined decidedly superior in comparison to bare g-C3N4 and ZnO, and the optimized values of operational parameters are estimated to be 25% of ZnO in g-C3N4 [g-C3N4/ZnO(25%)], 30 mg/L of dye solution (50 mL), pH = 10, and 20 mg of catalyst dose amount. 99.54%, 52.52%, and 35.58% of MB dye is degraded in 60 min of visible light irradiation at pH = 10 over g-C3N4/ZnO (25%), g-C3N4, and ZnO, respectively, while the pseudo-first rate constant values for the MB degradation were estimated to be 87.73 × 10–3, 11.30 × 10–3, and 6.56 × 10–3, respectively. The enhanced photocatalytic efficiency of the g-C3N4/ZnO nanoheterostructures could be due to the creation of heterojunction by the coupling of two semiconductors of well-matched band structures in which effective charge transfer has occurred. The prepared g-C3N4/ZnO demonstrated significant photostability after utilization in four runs of cycles with a retention of 92% efficiency. The ·O2 is the main reactive species participating in the degradation of MB dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abou-Gamra ZM, Medien HAA (2013) Kinetic, thermodynamic and equilibrium studies of rhodamine B adsorption by low cost biosorbent sugar cane bagasse. Eur Chem Bull 2(7):417–422

    CAS  Google Scholar 

  • Aditya T, Jana J, Pal A, Pal T (2018) One-pot fabrication of perforated graphitic carbon nitride nanosheets decorated with copper oxide by controlled ammonia and sulfur trioxide release for enhanced catalytic activity. ACS Omega 3:9318–9332. https://doi.org/10.1021/acsomega.8b00968

    Article  CAS  Google Scholar 

  • Albadri AEAE, Aissa MAB, Modwi A, Saleh SM (2023) Synthesis of mesoporous Ru-ZnO@g-C3N4 nanoparticles and their photocatalytic activity for methylene blue degradation. Water 15:481. https://doi.org/10.3390/w15030481

    Article  CAS  Google Scholar 

  • Alhaddad M, Navarro RM, Hussein MA, Mohamed RM (2020) Bi2O3/g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.06.271

    Article  Google Scholar 

  • Ayodhya D, Veerabhadram G (2021) Microwave-assisted fabrication of g-C3N4 nanosheets sustained Bi2S3 heterojunction composites for the catalytic reduction of 4-nitrophenol. EnvironTechnol 42:826–841

    CAS  Google Scholar 

  • Balu S, Velmurugan S, Palanisamy S, Chen S-W, Velusamy V, Yang TCK, El-SI E-S (2019) Synthesis of α-Fe2O3 decorated g- C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media. J Taiwan Inst Chem Eng 99:258–267. https://doi.org/10.1016/j.jtice.2019.03.011

    Article  CAS  Google Scholar 

  • Ding R, Cao S, Chen H, Jiang F, Wang X (2019) Preparation of tellurium doped graphitic carbon nitride and its visible-light photocatalytic performance on nitrogen fixation. Colloids Surf A 563:263–270. https://doi.org/10.1016/j.colsurfa.2018.12.020

    Article  CAS  Google Scholar 

  • Ding F, Ming T, Zhang H, Gao Y, Dragutan V, Sun Y, Dragutan I, Xu Z (2022) Plasmonic Ag nanoparticles decorated g-C3N4 for enhanced visible-light driven photocatalytic degradation and H2 production. Resour Chem Mater 1(1):1–7. https://doi.org/10.1016/j.recm.2021.12.004

    Article  Google Scholar 

  • Fageria P, Sudharshan KY, Nazir R, Basu M, Pande S (2017) Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction. Electrochim Acta. https://doi.org/10.1016/j.electacta.2017.11.184

    Article  Google Scholar 

  • Fan CK, Feng Q, Xu GQ, Lv J, Zhang Y, Liu JQ, Qin YQ, Wu YC (2018) Enhanced photocatalytic performances of ultrafine g-C3N4 nanosheets obtained by gaseous stripping with wet nitrogen. Appl Surf Sci 427:730–738

    Article  CAS  Google Scholar 

  • Fatimah I, Sulistyowati RZ, Wijayana A, Purwiandono G, Sagadevan S (2023) Z-scheme NiO/g-C3N4 nanocomposites prepared using phyto-mediated nickel nanoparticles for the efficient photocatalytic degradation. Heliyon 9:e16232

    Article  CAS  Google Scholar 

  • Fu XL, Tang WM, Ji L, Chen SF (2012) V2O5/Al2O3 composite photocatalyst: preparation, characterization, and the role of Al2O3. Chem Eng J 180:170–177

    Article  CAS  Google Scholar 

  • Fu J, Wang S, Wang Z, Liu K, Li H, Liu H, Hu J, Xu X, Li H, Liu M (2020) Graphitic carbon nitride based single-atom photocatalysts. Front Phys 15(3):33201. https://doi.org/10.1007/s11467-019-0950-z

    Article  Google Scholar 

  • Gayathri K, Teja YN, Prakash RM et al (2022) In situ-grown ZnO particles on g-C3N4 layers: a direct Z-scheme-driven photocatalyst for the degradation of dye and pharmaceutical pollutants under solar irradiation. J Mater Sci Mater Electron 33:9774–9784. https://doi.org/10.1007/s10854-022-07825-6

    Article  CAS  Google Scholar 

  • Ghahramanifard F, Rouhollahi A, Fazlolahzadeh O (2018) Electrodeposition of Cu-doped p-type ZnO nanorods; effect of Cu doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure. Superlatt Microstruct 114:1–14. https://doi.org/10.1016/j.spmi.2017.07.019

    Article  CAS  Google Scholar 

  • Guo H, Niu C-G, Feng C-Y, Liang C, Zhang L, Wen X-J, Yang Y, Liu H-Y, Li L, Lin L-S (2020) Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin porous graphitic carbon nitride for boosted photocatalytic reactive oxygen species generation. Chem Eng J 385:123919. https://doi.org/10.1016/j.cej.2019.123919

    Article  CAS  Google Scholar 

  • Habibi-Yangjeh A, Mousavi M, Nakata K (2019) Boosting visible-light photocatalytic performance of g-C3N4/Fe3O4 anchored with CoMoO4 nanoparticles: novel magnetically recoverable photocatalysts. J Photochem Photobiol A Chem 368:120–136

    Article  CAS  Google Scholar 

  • Hmamouchi S, El YA, El HM, Sallek M, El IBC (2023) Optimization of photocatalytic parameters for MB degradation by g-C3N4 nanoparticles using response surface methodology (RSM). Diam Relat Mater 136:109986. https://doi.org/10.1016/j.diamond.2023.109986

    Article  CAS  Google Scholar 

  • Jang E, Kim DW, Hong SH, Park YM, Park TJ (2019) Visible light-driven g-C3N4@ZnO heterojunction photocatalyst synthesized via atomic layer deposition with a specially designed rotary reactor. Appl Surf Sci 487:206–210. https://doi.org/10.1016/j.apsusc.2019.05.035

    Article  CAS  Google Scholar 

  • Jo WK, Selvam NCS (2015) Enhanced visible light-driven photocatalytic performance of ZnO-g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite. J Hazard Mater 299:462–470

    Article  CAS  Google Scholar 

  • Kadi MW, Mohamed RM, Ismail AA, Bahnemann DW (2020) Soft and hard templates assisted synthesis mesoporous CuO/g-C3N4 heterostructures for highly enhanced and accelerated Hg (II) photoreduction under visible light. J Colloid Interface Sci 580:223–233

    Article  CAS  Google Scholar 

  • Kumaresan N, Sinthiya MMA, Sarathbavan M, Ramamurthi K, Sethuraman K, Babu RR (2019) Synergetic effect of g-C3N4/ZnO binary nanocomposites heterojunction on improving charge carrier separation through 2D/1D nanostructures for effective photocatalytic activity under the sunlight irradiation. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.116356

    Article  Google Scholar 

  • Lahootifar Z, Habibi-Yangjeh A, Khataee A (2023) One-pot decoration of CdS and CdMoO4 nanoparticles on g-C3N4 nanoplates: Boosted photocatalytic degradation of tetracycline. J Alloys Compd 969:172481. https://doi.org/10.1016/j.jallcom.2023.172481

    Article  CAS  Google Scholar 

  • Li L, Sun S-Q, Wang Y-X, Wang C-Y (2017) Facile synthesis of ZnO/g-C3N4 composites with honeycomb-like structure by H2 bubble templates and their enhanced visible light photocatalytic performance. J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2017.12.016

    Article  Google Scholar 

  • Li N, Tian Y, Zhao J, Zhang J, Zuo W, Kong L, Cui H (2018) Z-scheme 2D/3D g-C3N4 @ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light. Chem Eng 352:412–422

    Article  CAS  Google Scholar 

  • Lin B, Xia M, Xu B, Chong B, Chen Z, Yang G (2022) Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chin J Catal 43(8):2141–2172. https://doi.org/10.1016/S1872-2067(22)64110-X

    Article  CAS  Google Scholar 

  • Lin H, Wu J, Zhou F, Zhao X, Lu P, Sun G, Song Y, Li Y, Liu X, Hongxing D (2023) Graphitic carbon nitride-based photocatalysts in the applications of environmental catalysis. J Environ Sci 124:570–590. https://doi.org/10.1016/j.jes.2021.11.017

    Article  CAS  Google Scholar 

  • Liu W, Wang B (2021) Biomimetic synthesis of C-doped g-C3N4 spinous hollow microspheres from sunflower pollen with enhanced visible-light photocatalytic performance. Fullerenes Nanotubes Carbon Nanostruct 29(12):966–973. https://doi.org/10.1080/1536383X.2021.1921741

    Article  CAS  Google Scholar 

  • Liu W, Wang M, Xu C, Chen S, Fu X (2013) Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study. J Mol Catal a: Chem 368–369:9–15

    Article  Google Scholar 

  • Liu J, Wang H, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chem Soc Rev 45:2308–2326

    Article  CAS  Google Scholar 

  • Liu J, Yan X-T, Qin X-S, Wu S-J, Zhao H, Yu W-B, Chen L-H, Li Y, Su B-L (2019) Light-assisted preparation of heterostructured g-C3N4/ZnO nanorods arrays for enhanced photocatalytic hydrogen performance. Catal Today. https://doi.org/10.1016/j.cattod.2019.02.028

    Article  Google Scholar 

  • Lu S, Xue M, Tao A, Weng Y, Yao B, Weng W, Lin X (2021) Facile microwave-assisted synthesis of functionalized carbon nitride quantum dots as fluorescence probe for fast and highly selective detection of 2, 4, 6-trinitrophenol. J Fluoresc 31:1–9

    Article  CAS  Google Scholar 

  • Malik R, Rana PS, Tomer VK, Chaudhary V, Nehra SP, Duhan S (2016) Visible light-driven mesoporous Au-TiO2/SiO2 photocatalysts for advanced oxidation process. Ceram Int 42:10892–10901

    Article  CAS  Google Scholar 

  • Manimozhi R, Mathankumar M, Gnana Prakash AP (2020) Synthesis of g-C3N4/ZnO heterostructure photocatalyst for enhanced visible degradation of organic dye. Optik. https://doi.org/10.1016/j.ijleo.2020.165548

    Article  Google Scholar 

  • Meena PL, Poswal K, Surela AK, Saini JK (2021) Facile synthesis of ZnO/CuO/Ag2O ternary metal oxide nanocomposite for effective photodegradation of organic water pollutants. Water Sci Technol 84(9):2615–2634. https://doi.org/10.2166/wst.2021.431.ISSN-0273-1223

    Article  CAS  Google Scholar 

  • Meena PL, Poswal K, Surela AK (2021b) Fabrication of ZnO/CuO hybrid nanocomposite for photocatalytic degradation of brilliant cresyl blue (BCB) dye in aqueous solutions. J Water Environ Nanotechnol 6(3):196–211. https://doi.org/10.22090/jwent.2021.03.001

    Article  CAS  Google Scholar 

  • Meena PL, Poswal K, Surela AK (2022) Facile synthesis of ZnO nanoparticles for the effective photodegradation of malachite green (MG) dye in aqueous solution. Water Environ J 36(3):513–524. https://doi.org/10.1111/wej.12783

    Article  CAS  Google Scholar 

  • Meena PL, Poswal K, Surela AK, Saini JK (2023a) Synthesis of graphitic carbon nitride/zinc oxide (g-C3N4/ZnO) hybrid nanostructures and investigation of the effect of ZnO on the photodegradation activity of g-C3N4 against the brilliant cresyl blue (BCB) dye under visible light irradiation. Adv Compos Hybrid Mater 6:16. https://doi.org/10.1007/s42114-022-00577-1

    Article  CAS  Google Scholar 

  • Meena PL, Poswal K, Surela AK, Mordhiya B, Meena KM (2023b) Ag2O adorned ZnO nanostructures: cooperative and sustainable nanomaterial system for effective reduction and mineralization of hazardous water pollutants. Environ Sci Pollut Res 30:68770–68791. https://doi.org/10.1007/s11356-023-27215-7

    Article  CAS  Google Scholar 

  • Modwi A, Abbo M, Hassan E, Houas A (2016) Effect of annealing on physicochemical and photocatalytic activity of Cu5% loading on ZnO synthesized by sol–gel method. J Mater Sci Mater Electron 27:12974–12984

    Article  CAS  Google Scholar 

  • Montigud H, Tanguy B, Demazeau G, Alves I, Courjault S (2000) C3N4: dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form. J Mater Sci 35(10):2547–2552

    Article  Google Scholar 

  • Ngullie RC, Alaswad SO, Bhuvaneswari K, Shanmugam P, Pazhanivel T, Arunachalam P (2020) Synthesis and characterization of efficient g-C3N4/ZnO nanocomposites photocatalyst for photocatalytic degradation of methylene blue. Coatings 10:500. https://doi.org/10.3390/coatings10050500

    Article  CAS  Google Scholar 

  • Osman H, Su Z, Ma X (2017) Efficient photocatalytic degradation of Rhodamine B dye using ZnO/graphitic C3N4 nanocomposites synthesized by microwave. Environ Chem Lett 15:435–441

    Article  CAS  Google Scholar 

  • Pang X, Cui C, Su M, Wang Y, Wei Q, Tan W (2018) Construction of self-powered cytosensing device based on ZnO nanodisks@g-C3N4 quantum dots and application in the detection of CCRF-CEM cells. Nano Energy 46:101–109. https://doi.org/10.1016/j.nanoen.2018.01.018

    Article  CAS  Google Scholar 

  • Paul DR, Gautam S, Panchal P, Nehra SP, Choudhary P, Sharma A (2020) ZnO-modified g-C3N4: a potential photocatalyst for environmental application. ASC Omega. https://doi.org/10.1021/acsomega.9b02688

    Article  Google Scholar 

  • Pawar RC, Son Y, Kim YJ, Ahn SH, Lee CS (2018) Integration of ZnO with g-C3N4 structures in core-shell approach via sintering process for rapid detoxification of water under visible irradiation. Curr Appl Phys 16:101–108

    Article  Google Scholar 

  • Prabhu S, Pudukudy M, Harish S, Navaneethan M, Sohila S, Murugesan K, Ramesh R (2020) Facile construction of djembe-like ZnO and its composite with g-C3N4 as a visible-light-driven heterojunction photocatalyst for the degradation of organic dyes. Mater Sci Semicond Process 106:104754. https://doi.org/10.1016/j.mssp.2019.104754

    Article  CAS  Google Scholar 

  • Priya A, Senthil RA, Selvi A, Arunachalam P, Kumar CS, Madhavan J, Boddula R, Pothu R, Al-Mayouf AM (2020) A study of the photocatalytic and photoelectrochemical activity of as-synthesized WO3/g-C3N4 composite photocatalysts for AO7 degradation. Mater Sci Energy Technol 3:43–50

    CAS  Google Scholar 

  • Qamar MA, Shahid S, Javed M, Iqbal S, Sher M, Akbar MB (2020) Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J Photochem Photobiol A 401:112776. https://doi.org/10.1016/j.jphotochem.2020.112776

    Article  CAS  Google Scholar 

  • Rao VS, Sharma R, Paul DR et al (2023) Architecting the Z-scheme heterojunction of Gd2O3/g-C3N4 nanocomposites for enhanced visible-light-induced photoactivity towards organic pollutants degradation. Environ Sci Pollut Res 30:98773–98786. https://doi.org/10.1007/s11356-023-25360-7

    Article  CAS  Google Scholar 

  • Sert B, Bilici Z, Ocakoglu K, Dizge N, Rad TS, Khataee A (2023) Preparation of S-scheme g-C3N4/ZnO heterojunction composite for highly efficient photocatalytic destruction of refractory organic pollutant. Catalysts 13:485. https://doi.org/10.3390/catal13030485

    Article  CAS  Google Scholar 

  • Shang L, Bian T, Zhang B, Zhang D, Wu L-Z, Tung C, Yin Y, Zhang T (2014) Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew Chem Int Ed 53:250–254

    Article  CAS  Google Scholar 

  • Sharma R, Almáši M, Nehra SP, Rao VS, Panchal P, Paul DR, Jain IP, Sharma A (2022) Photocatalytic hydrogen production using graphitic carbon nitride (GCN): a precise review. Renew Sustain Energy Rev 168:112776

    Article  CAS  Google Scholar 

  • Shi YC, Chen SS, Feng JJ, Lin XX, Wang W, Wang AJ (2018) Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution. Appl Surf Sci 441:438–447. https://doi.org/10.1016/j.apsusc.2018.01.240

    Article  CAS  Google Scholar 

  • Shoran S, Chaudhary S, Sharma A (2023) Photocatalytic dye degradation and antibacterial activities of CeO2/g-C3N4 nanomaterials for environmental applications. Environ Sci Pollut Res 30:98682–98700. https://doi.org/10.1007/s11356-022-23815-x

    Article  CAS  Google Scholar 

  • Sun JX, Yuan YP, Qiu LG, Jiang X, Xie AJ, Shen YH, Zhu JF (2012) Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans 41:6756–6763

    Article  CAS  Google Scholar 

  • Suresh R, Karthikeyan NS, Gnanasekaran L, Rajendran S, Soto-Moscoso M (2023) Facile synthesis of CuO/g-C3N4 nanolayer composites with superior catalytic reductive degradation behavior. Chemosphere 315:137711. https://doi.org/10.1016/j.chemosphere.2022.137711

    Article  CAS  Google Scholar 

  • Tan X, Wang X, Hang H, Zhang D, Zhang N, Xiao Z, Tao H (2019) Self-assembly method assisted synthesis of g-C3N4/ZnO heterostructure nanocomposites with enhanced photocatalytic performance. Opt Mater 96:109266. https://doi.org/10.1016/j.optmat.2019.109266

    Article  CAS  Google Scholar 

  • Thomas J (2018) Synthesis of Sm3+-doped graphitic carbon nitride nanosheets for the photocatalytic degradation of organic pollutants under sunlight. Catal Today 310:11–18

    Article  CAS  Google Scholar 

  • Tseng I-H, Sung Y-M, Chang P-Y, Chen C-Y (2019) Anatase TiO2-decorated graphitic carbon nitride for photocatalytic conversion of carbon dioxide. Polymers 11:146

    Article  Google Scholar 

  • Vijayan M, Manikandan V, Rajkumar C, Hatamleh AA, Alnafisi BK, Easwaran G, Liu X, Sivakumar K, Kim H (2023) Constructing Z-scheme g-C3N4/TiO2 heterostructure for promoting degradation of the hazardous dye pollutants. Chemosphere 311:136928. https://doi.org/10.1016/j.chemosphere.2022.136928

    Article  CAS  Google Scholar 

  • Wang J, Wang S (2022) A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application. Coord Chem Rev 453:214338

    Article  CAS  Google Scholar 

  • Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Zhang X, Dai Y (2012) Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Interfaces 4:4024–4030. https://doi.org/10.1021/am300835p

    Article  CAS  Google Scholar 

  • Wang Y, Liu Z, Li Y, Yang X, Zhao L, Peng J (2023a) Boosting photocatalytic performance of ZnO nanowires via building heterojunction with g-C3N4. Molecules 28:5563. https://doi.org/10.3390/molecules28145563

    Article  CAS  Google Scholar 

  • Wang S, Zhang D, Su P, Yao X, Liu J, Pu X, Li H, Cai P (2023b) In-situ preparation of mossy tile-like ZnIn2S4/Cu2MoS4 S-scheme heterojunction for efficient photocatalytic H2 evolution under visible light. J Colloid Interface Sci 650:825–835. https://doi.org/10.1016/j.jcis.2023.07.052

    Article  CAS  Google Scholar 

  • Wu M, Gong Y, Nie T, Zhang J, Wang R, Wang H, He B (2019) Template-free synthesis of nanocage-like g-C3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity. J Mater Chem A. https://doi.org/10.1039/c8ta12076e

    Article  Google Scholar 

  • Xu Q, Cheng B, Yu J, Liu G (2017) Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as co-catalyst. Carbon 118:241–249

    Article  CAS  Google Scholar 

  • Xu T, Wang X, Hang H, Zhang D, Zhang N, Xiao Z, Tao H (2019) Self-assembly method assisted synthesis of g-C3N4/ZnO heterostructure nanocomposites with enhanced photocatalytic performance. Opt Mater 96:109266

    Article  Google Scholar 

  • Yu W, Chen J, Shang T, Chen L, Gu L, Peng T (2017) Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl Catal B 219:693–704

    Article  CAS  Google Scholar 

  • Zhang D, Zhang R, Liu J, Pu X, Cai P (2023) 3D/2D ZnIn2S4/BiFeO3 as S-scheme heterojunction photocatalyst for boosted visible-light hydrogen evolution. J Am Ceram Soc 106(8):4785–4793. https://doi.org/10.1111/jace.19135

    Article  CAS  Google Scholar 

  • Zhu Y-P, Li M, Liu Y-L, Ren T-Z, Yuan Z-Y (2014) Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. J Phys Chem C 118:10963–10971. https://doi.org/10.1021/jp502677h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Department of Chemistry, University of Rajasthan, Jaipur (India), MRC, MINT, Jaipur, and Manipal University, Jaipur for technical support. K.P. thanks to the UGC-India and J.K.S. thanks to the CSIR-India for their fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Meena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editorial responsibility: Samareh Mirkia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 152 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, P.L., Poswal, K., Surela, A.K. et al. Synthesis of g-C3N4/ZnO nanostructures via mechano-thermal method for photocatalytic degradation of methylene blue dye. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-05704-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13762-024-05704-7

Keywords

Navigation