Skip to main content
Log in

Anaerobic co-digestion of landfill leachate as main energy source

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Landfill leachate contains a significant amount of organic matter, making it a valuable source for CH4 production. However, due to its liquid form, the mono-digestion of leachate could result in a reduced CH4 yield per unit reactor volume. This necessitates its utilization in anaerobic digesters alongside solid waste streams. The objective of this study was to evaluate co-digestion performance of landfill leachate with different wastes using biomethane potential test and assess the optimum combination in terms of CH4 productivity. Modified Gompertz model was used for kinetic characterization. Experiments were held under mesophilic conditions and lasted for 30 days. Among mono-digestion of substrates, landfill leachate exhibited the highest CH4 productivity and yield: 83.17 mL/gVS.d and 793 ± 6.85 mL/gVS, respectively. Fish waste was found to have the lowest energy potential with 350 mL/gVS CH4 yield and 18.24 mL/gVS.d CH4 productivity. CH4 productivities for co-digestion cases ranged from 5.48 to 67.85 mL/gVS.d. Mixing landfill leachate and chicken manure with the same amount on wet weight basis yielded the highest CH4 productivity. On the other hand, inclusion of fish waste consistently resulted in decreased CH4 yield and productivity for all incubations, which suggests that fish waste may not be suitable as a co-substrate for landfill leachate in terms of CH4 production. Monitoring of chemical parameters revealed that buffering capacity of the system and free ammonia formation were the main parameters governing CH4 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be available upon reasonable request.

Abbreviations

BMP:

Biomethane potential

C/N ratio:

Carbon-to-nitrogen ratio

CM:

Chicken manure

FA:

Free ammonia

FOS:

Volatile fatty acids

FW:

Fish waste

LL:

Landfill leachate

MET:

Microbial electrochemical technologies

OFMSW:

Organic fraction of municipal solid waste

SC:

Sludge cake

TAC:

Alkaline buffering capacity

TS:

Total solids

VS:

Volatile solids

References

  • Abouelenien F, Namba Y, Kosseva MR, Nishio N, Nakashimada Y (2014) Enhancement of methane production from co-digestion of chicken manure with agricultural wastes. Bioresour Technol 159:80–87

    Article  CAS  Google Scholar 

  • Akca MS, Bostancı O, Aydin AK, Koyuncu I, Altinbas M (2021) BioH2 production from food waste by anaerobic membrane bioreactor. Int J Hydro Energy 46(55):27941–27955

    Article  CAS  Google Scholar 

  • Altinbas M, Cicek OA (2019) Anaerobic co-digestion of cattle and chicken manures: free ammonia inhibition. Energy Sources Part A Rec Util Environ Effects 41(9):1097–1109

    Article  CAS  Google Scholar 

  • Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32(4):625–639

    Article  CAS  Google Scholar 

  • Aromolaran A, Sartaj M, Alqarellah RMJ (2022) Biogas production from sewage scum through anaerobic co-digestion. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02152-y

    Article  Google Scholar 

  • Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O (2020) Waste management through composting: challenges and potentials. Sustainability 12(11):4456

    Article  CAS  Google Scholar 

  • Balcioglu G, Jeswani HK, Azapagic A (2022) Evaluating the environmental and economic sustainability of energy from anaerobic digestion of different feedstocks in Turkey. Sustain Prod Consum 32:924–941

    Article  Google Scholar 

  • Bandala ER, Liu A, Wijesiri B, Zeidman AB, Goonetilleke A (2021) Emerging materials and technologies for landfill leachate treatment: a critical review. Environ Pollut 291:118133

    Article  CAS  Google Scholar 

  • Belaid M, Matheri AN, Mamabolo KS, Ramatsa I, Muzenda E (2018) Production of biomethane through co-digestion of cow manure and market fruits waste. In: 9th ınternational conference on chemical, agriculture, environment and natural sciences, pp 39–44

  • Berenjkar P, Islam M, Yuan Q (2019) Co-treatment of sewage sludge and mature landfill leachate by anaerobic digestion. Int J Environ Sci Technol 16:2465–2474

    Article  CAS  Google Scholar 

  • Bücker F, Marder M, Peiter MR, Lehn DN, Esquerdo VM, de Almeida Pinto LA, Konrad O (2020) Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renew Energy 147:798–805

    Article  Google Scholar 

  • Bhatnagar N, Ryan D, Murphy R, Enright AM (2022) A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential–global and Irish perspective. Renew Sustain Energy Rev 154:111884

    Article  CAS  Google Scholar 

  • Bolado-Rodriguez S, Toquero C, Martin-Juarez J, Travaini R, Garcia-Encina PA (2016) Effect of thermal, acid, alkaline and alkaline peroxide pretreatments on the biochemical methane potential kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour Technol 201:182–190

    Article  CAS  Google Scholar 

  • Bonu R, Anand N, Palani SG (2023) Impact of thermal pre-treatment on anaerobic co-digestion of sewage sludge and landfill leachate. Mater Today Proc 72:99–103

    Article  CAS  Google Scholar 

  • Borowski S, Weatherley L (2013) Co-digestion of solid poultry manure with municipal sewage sludge. Bioresour Technol 142:345–352

    Article  CAS  Google Scholar 

  • Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF (1998) An examination of the continuous anaerobic co-digestion of cattle slurry and fish ofal. Process Saf Environ Prot 76:224–228

    Article  CAS  Google Scholar 

  • Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF (1999) Co-digestion of waste organic solids: batch studies. Bioresour Technol 67:117–122

    Article  CAS  Google Scholar 

  • Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF (2002) Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 22(1):71–77

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Chen D, Yin L, Wang H, He P (2014) Pyrolysis technologies for municipal solid waste: a review. Waste Manag 34(12):2466–2486

    Article  CAS  Google Scholar 

  • Choudhury A, Lepine C, Witarsa F, Good C (2022) Anaerobic digestion challenges and resource recovery opportunities from land-based aquaculture waste and seafood processing byproducts: a review. Bioresour Technol 354:127144

    Article  CAS  Google Scholar 

  • Christensen T (ed) (2011) Solid waste technology and management. John Wiley & Sons, Hoboken

    Google Scholar 

  • Chung TH, Dhar BR (2021) A multi-perspective review on microbial electrochemical technologies for food waste valorization. Bioresour Technol 342:125950

    Article  Google Scholar 

  • Cirne DG, Paloumet X, Bjornsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion lipid rich waste: effects of lipid concentration. Renew Energy 32:965–975

    Article  CAS  Google Scholar 

  • Cook SM, Skerlos SJ, Raskin L, Love NG (2017) A stability assessment tool for anaerobic codigestion. Water Res 112:19–28

    Article  CAS  Google Scholar 

  • Costa A, Tangorra FM, Zaninelli M, Oberti R, Cavalchini AG, Savaoini G, Lazzari M (2016) Evaluating an e-nose ability to detect biogas plant efficiency: a case study. Ital J Anim Sci 15(1):116–123

    Article  CAS  Google Scholar 

  • de Carluccio M, Fiorentino A, Rizzo L (2020) Multi-barrier treatment of mature landfill leachate: effect of Fenton oxidation and air stripping on activated sludge process and cost analysis. J Environ Chem Eng 8(5):104444

    Article  Google Scholar 

  • de Castro TM, Arantes EJ, de Mendonca CMSS, Gotardo JT, Passig FH, de Carvalho KQ, Gomes SD (2021) Anaerobic co-digestion of industrial waste landfill leachate and glycerin in a continuous anaerobic bioreactor with a fixed structure bed (ABFSB): effects of volumetric organic loading rate and alkaline supplementation. Renew Energy 164:1436–1446

    Article  Google Scholar 

  • Dewil R, Appels L, Baeyens J, Degreve J (2007) Peroxidation enhances the biogas production in the anaerobic digestion of biosolids. J Hazard Mater 146:577–581

    Article  CAS  Google Scholar 

  • Dhamsaniya M, Sojitra D, Modi H, Shabiimam MA, Kandya A (2023) A review of the techniques for treating the landfill leachate. Mater Today Proc 77:358–364

    Article  CAS  Google Scholar 

  • Dimitriadis A, Bezergianni S (2017) Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review. Renew Sustain Energy Rev 68:113–125

    Article  CAS  Google Scholar 

  • Fernandez S, Srinivas K, Schmidt AJ, Swita MS, Ahring BK (2018) Anaerobic digestion of organic fraction from hydrothermal liquefied algae wastewater byproduct. Bioresour Technol 247:250–258

    Article  CAS  Google Scholar 

  • Fountoulakis MS, Petousi I, Manios T (2010) Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag 30(10):1849–1853

    Article  CAS  Google Scholar 

  • Fuentes KL, Torres-Lozzado P, Chaparro TR (2021) Beverage wastewater treatment by anaerobic digestion in two stages for organic matter removal and energy production. Biomass Bioenergy 154:106260

    Article  CAS  Google Scholar 

  • Gao M, Yang J, Liu Y, Zhang J, Li J, Liu Y, Wu B, Gu L (2022) Deep insights into the anaerobic co-digestion of waste activated sludge with concentrated landfill leachate under different salinity stresses. Sci Total Environ 838:155922

    Article  CAS  Google Scholar 

  • Gebrezgabher SA, Meuwissen MP, Prins BA, Lansink AGO (2010) Economic analysis of anaerobic digestion—A case of Green power biogas plant in The Netherlands. NJAS-Wageningen J Life Sci 57(2):109–115

    Article  Google Scholar 

  • Guven H, Akca MS, Iren E, Keles F, Ozturk I, Altinbas M (2018) Co-digestion performance of organic fraction of municipal solid waste with leachate: preliminary studies. Waste Manag 71:775–784

    Article  CAS  Google Scholar 

  • Hassan M, Ding W, Shi Z, Zhao S (2016) Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: AC/N optimization case. Bioresour Technol 211:534–541

    Article  CAS  Google Scholar 

  • Ivanovs K, Spalvins K, Blumberga D (2018) Approach for modelling anaerobic digestion of fish waste. Energy Procedia 147:390–396

    Article  CAS  Google Scholar 

  • Jayanth TAS, Mamindlapelli NK, Begum S, Arelli V, Juntupally S, Ahuja S, Dugyala SK, Anupoju GR (2020) Anerobic mono and co-digestion of organic fraction of municipal solid waste and landfill leachate at industrial scale: Impact of organic loading rate on reaction kinetics, biogas yield and microbial diversity. Sci Total Environ 748:142462

    Article  Google Scholar 

  • Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: effects of pH, temperature and organic loading rate. Bioresour Technol 143:525–530

    Article  CAS  Google Scholar 

  • Junior IV, de Almeida R, Cammarota MC (2021) A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants. J Water Process Eng 40:101857

    Article  Google Scholar 

  • Kafle GK, Kim SH, Sung IK (2013) Ensiling of fish industry waste for biogas production: A lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour Technol 127:326–336

    Article  CAS  Google Scholar 

  • Kang KH, Shin HS, Park H (2002) Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res 36:4023–4032

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744

    Article  CAS  Google Scholar 

  • Kiselev A, Magaril E, Magaril R, Panepinto D, Ravina M, Zanetti MC (2019) Towards circular economy: evaluation of sewage sludge biogas solutions. Resources 8(2):91

    Article  Google Scholar 

  • Latif MA, Mehta MC, Batstone DJ (2015) Low pH anaerobic digestion of waste activated sludge for enhanced phosphorus release. Water Res 81:288–293

    Article  CAS  Google Scholar 

  • Latif MA, Mehta MC, Batstone DJ (2017) Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res 113:42–49

    Article  CAS  Google Scholar 

  • Lay JJ, Li YY, Noike T, Endo J, Ishimoto S (1997) Analysis of environmental factors affecting methane production from high-solids organic waste. Water Sci Technol 36(6–7):493–500

    Article  CAS  Google Scholar 

  • Li JX, Wang LA, Zhan XY, Huang C (2021) Exploring the biogas production and microbial community from co-digestion of sewage sludge with municipal solid waste incineration from fresh leachate. Int J Environ Sci Technol 18:901–912

    Article  CAS  Google Scholar 

  • Liao X, Zhu S, Zhong D, Zhu J, Liao L (2014) Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors. Waste Manag 34(11):2278–2284

    Article  CAS  Google Scholar 

  • Lin CY, Chang FY, Chang CH (2000) Co-digestion of leachate with septage using a UASB reactor. Bioresour Technol 73:175–178

    Article  CAS  Google Scholar 

  • Liu Y, Xu J, Zhang Y, Yuan Z, He M, Liang C et al (2015) Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy 90:1199–1205

    Article  CAS  Google Scholar 

  • Liu Y, Lv Y, Cheng H, Zou L, Li Y-Y, Liu J (2022) High efficiency anaerobic co-digestion of food waste and mature landfill leachate using expanded granular sludge blanket reactor. Bioresour Technol 362:127847

    Article  CAS  Google Scholar 

  • Lossie U, Putz P (2008) Practice report Hach–Lange. Germany targeted control of biogas plants with the help of FOS/TAC, pp 1–4

  • Luostarinen S, Luste S, Sillanpää M (2009) Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour Technol 100(1):79–85

    Article  CAS  Google Scholar 

  • Lv Y, Chang N, Li YY, Liu J (2021) Anaerobic co-digestion of food waste with municipal solid waste leachate: a review and prospective application with more benefits. Resour Conserv Recycl 174:105382

    Article  Google Scholar 

  • Maile OI, Tesfagiorgis HB, Muzenda E (2015) Factors influencing chemical absorption of CO2 and H2S in biogas purification: a review. In: World congress on engineering and computer science, San Francisco, USA

  • Maile I, Muzenda E, Mbohwa C (2016) Biochemical methane potential of OFMSW for City of Johannesburg

  • Makarichi L, Jutidamrongphan W, Techato KA (2018) The evolution of waste-to-energy incineration: a review. Renew Sustain Energy Rev 91:812–821

    Article  CAS  Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Macé S, Llabrés P (2001) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  Google Scholar 

  • Matheri AN, Ndiweni SN, Belaid M, Muzenda E, Hubert R (2017) Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renew Sustain Energy Rev 80:756–764

    Article  Google Scholar 

  • Menardo S, Balsari P (2012) An analysis of the energy potential of anaerobic digestion of agricultureal by-products and organic waste. BioEnergy Res 5:759–767

    Article  Google Scholar 

  • Mojiri A, Zhou JL, Ratnaweera H, Ohashi A, Ozaki N, Kindaichi T, Asakura H (2021) Treatment of landfill leachate with different techniques: an overview. J Water Reuse Desalination 11(1):66–96

    Article  CAS  Google Scholar 

  • Montusiewicz A, Lebiocka M (2011) Co-digestion of intermediate landfill leachate and sewage sludge as method of leachate utilization. Bioresour Technol 102:2563–2571

    Article  CAS  Google Scholar 

  • Nag M, Shimaoka T, Komiya T (2018) Influence of operations on leachate characteristics in the aerobic-anaerobic landfill method. Waste Manag 78:698–707

    Article  CAS  Google Scholar 

  • Nair A, Sartaj M, Kennedy K, Coelho NMG (2014) Enhancing biogas production from anaerobic biodegradation of the organic fraction of municipal solid waste through leachate blending and recirculation. Waste Manag Res 32(10):939–946

    Article  Google Scholar 

  • Orlando MQ, Borja VM (2020) Pretreatment of animal manure biomass to improve biogas production: a review. Energies 13(14):3573

    Article  CAS  Google Scholar 

  • Oztürk I (2010) Katı Atık Yönetimi ve AB Uyumlu Uygulamalar, İSTAÇ Yayınları, İstanbul

  • Pan X, Angelidaki I, Alvarado-Morales M, Liu H, Liu Y, Huang X, Zhu G (2016) Methane production from formate, acetate and H2/CO2; focusing on kinetics and microabial characterization. Bioresour Technol 218:796–806

    Article  CAS  Google Scholar 

  • Park J, Lee B, Tian D, Jun H (2018) Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell. Biores Technol 247:226–233

    Article  CAS  Google Scholar 

  • Pasalari H, Esrafili A, Rezaee A, Gholami M, Farzadkia M (2021) Electrochemical oxidation pre-treatment for enhanced methane potential from landfill leachate in anaerobic co-digestion process: performance, Gompertz model and energy assessment. Chem Eng J 422:130046

    Article  CAS  Google Scholar 

  • Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  Google Scholar 

  • Riau V, De la Rubia MA, Perez M (2010) Temperature phased anaerobic digestion (TPAD) to obtain class A biosolids: A semi continuous study. Bioresour Technol 101:2706–2712

    Article  CAS  Google Scholar 

  • Salam B, Islam M, Rahman MT (2009) Biogas from anaerobic digestion of fish waste. In: Proceedings of the international conference on mechanical engineering, vol 26, pp 1–3

  • Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energy 129:457–472

    Article  Google Scholar 

  • Schnurer A, Nordberg Å (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57:735–740

    Article  CAS  Google Scholar 

  • Serrano A, Siles JA, Gutiérrez MC, Martín MÁ (2014) Optimization of anaerobic co-digestion of strawberry and fish waste. Appl Biochem Biotechnol 173:1391–1404

    Article  CAS  Google Scholar 

  • Shin J, Kim YB, Jeon JH, Choi S, Park IK, Kim YM (2017) Biomethanation of sewage sludge with food waste leachate via co-digestion. J Microbiol Biotechnol 27(8):1513–1518

    Article  CAS  Google Scholar 

  • Sillero L, Solera R, Perez M (2022a) Improvement of the anaerobic digestion of sewage sludge by co-digestion with wine vinasse and poultry manure: effect of different hydraulic retention times. Fuel 321:124104

    Article  CAS  Google Scholar 

  • Sillero L, Solera R, Perez M (2022b) Biochemical assays of potential methane to test biogas production from dark fermentation of sewage sludge and agricultural residues. Int J Hydrogen Energy 47(27):13289–13299

    Article  CAS  Google Scholar 

  • Singh R, Malik RK, Tauro P (1985) Anaerobic digestion of cattle waste at various retention times: a pilot scale study. Agric Wastes 12:313–316

    Article  CAS  Google Scholar 

  • Singh G, Shamsuddin MR, Lim SW (2018) Characterization of chicken manure from manjung region. IOP Conf Ser Mater Sci Eng 458(1):012084

    Article  Google Scholar 

  • Siyal AA, Shamsuddin R, Komiyama M, Manogaran MD, Soehartanto T (2023) Control strategies for enhanced biogas production from chicken manure. ChemBioEng Rev 10(4):423–440

    Article  CAS  Google Scholar 

  • Standard methods for the examination of water and wastewater, 21st edn. (2005) American Public Health Association/American Water Works Association/Water Environment Federation. Washington D.C., USA

  • Strik D, Domnanovich AM, Holubar P (2006) A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochem 41:1235–1238

    Article  CAS  Google Scholar 

  • Takeda PY, Gotardo JK, Gomes SD (2020) Anaerobic co-digestion of landfill leachate and acid mine drainage using upflow anaerobic sludge blanket reactor. Environ Technol 43–8:1118–1128

    Google Scholar 

  • Teng C, Zhou K, Peng C, Chen W (2021) Characterization and treatment of landfill leachate: a review. Water Res 203:117525

    Article  CAS  Google Scholar 

  • Tiehm A, Nickel K, Zellhorn M, Neis U (2001) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res 35:2003–2009

    Article  CAS  Google Scholar 

  • Ucisik AS, Henze M (2008) Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids. Water Res 42:3729–3738

    Article  CAS  Google Scholar 

  • Veluchamy C, Gilroyed BH, Kalamdhad AS (2017) Process performance and biogas production optimizing of mesophilic plug flow anaerobic digestion of corn silage. Fuel 253:1097–1103

    Article  Google Scholar 

  • Vob E, Weichgrebe D, Rosenkinwel KH (2009) FOS–TAC–Deduction methods, applications and significance. Internationale Wissenschaftskonferenz Biogas science-science meets practice, Lfl–Bayern, 2–4. 12.09, Erding

  • Wang Q, Kuninobu M, Kakimoto K, Ogawa HI, Kato Y (1999) Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Bioresour Technol 68:309–313

    Article  CAS  Google Scholar 

  • Wang X, Yang G, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83

    Article  CAS  Google Scholar 

  • Wang F, Pei M, Qiu L, Yao Y, Zhang C, Qiang H (2019) Performance of anaerobic digestion of chicken manure under gradually elevated organic loading rates. Int J Environ Res Public Health 16(12):2239

    Article  CAS  Google Scholar 

  • Wu Y, Song K (2021) Anaerobic co-digestion of waste activated sludge and fish waste: methane production performance and mechanism analysis. J Clean Prod 279:123678

    Article  CAS  Google Scholar 

  • Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques: a review. Bioresour Technol 95:1–10

    Article  CAS  Google Scholar 

  • Zahan Z, Othman MZ (2019) Effect of pre-treatment on sequential anaerobic co-digestion of chicken litter with agricultural and food wastes under semi-solid conditions and comparison with wet anaerobic digestion. Bioresour Technol 281:286–295

    Article  CAS  Google Scholar 

  • Zahan Z, Othman MZ, Muster TH (2018) Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: a comparative batch study for C/N optimisation. Waste Manag 71:663–674

    Article  CAS  Google Scholar 

  • Zakaria BS, Dhar BR (2019) Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: Fundamentals, process optimization, design and scale-up considerations. Biores Technol 289:121738

    Article  CAS  Google Scholar 

  • Zhang B, Zhang LL, Zhang SC, Shi HZ, Cai WM (2005) The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol 26(3):329–340

    Article  Google Scholar 

  • Zhang P, Chen Y, Zhou Q (2009) Waste activated sludge hydrolysis and short chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH. Water Res 43:3735–3742

    Article  CAS  Google Scholar 

  • Zhou J, Zhang R, Liu F, Yong X, Wu X, Zheng T, Jiang M, Jia H (2016) Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour Technol 217:44–49

    Article  CAS  Google Scholar 

  • Zhou S, Wang J, Peng S, Chen T, Yue Z (2021) Anaerobic co-digestion of landfill leachate and acid mine drainage using up-flow anaerobic sludge blanket reactor. Environ Sci Pollut Res 28:8498–8506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Samsun Avdan Energy Inc. for providing substrates used in this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MSA was involved in the conceptualization, investigation, data curation, software, writing—original draft, and writing—review and editing. GC-P contributed to the conceptualization, investigation, visualization and data curation. EI assisted in the conceptualization and supervision. MA performed the conceptualization, investigation, resources, supervision, project administration, and writing—review and editing.

Corresponding author

Correspondence to M. S. Akca.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Consent has been received explicitly from all co-authors.

Consent for publication

The copyright permissions have been taken and consent to submit has been received explicitly from all co-authors.

Additional information

Editorial responsibility: S. Mirkia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akca, M.S., Ceylan-Perver, G., Iren, E. et al. Anaerobic co-digestion of landfill leachate as main energy source. Int. J. Environ. Sci. Technol. 21, 6871–6890 (2024). https://doi.org/10.1007/s13762-023-05441-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05441-3

Keywords

Navigation