Skip to main content
Log in

The nexus of phyto-assisted plant growth-promoting bacterial application for bioremediation of azo dye

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Textile manufacturing and dyeing units are one of the prime industrial sectors responsible to produce huge quantities of liquid effluents in developing countries. Azo and other dyes in textile effluents are a significant concern because of their potential risk from pollution of environmental systems and human health. Different studies have highlighted the role of different bacteria for the removal of azo dyes and related contamination. Where, plant growth-promoting bacteria (PGPB) have been widely used to improve plant growth in agricultural systems, but the simultaneous role they play in the bioremediation of polluted environments has not been much highlighted. This review focuses on an emerging area of the PGPB application for the promotion of plant growth in an environment contaminated by dyes and the restoration and remediation of the environment. Recent studies have shown that PGPB have developed enzymatic mechanisms to enhance plant growth while simultaneously degrading a variety of structurally complex azo dyes under certain conditions. The mineralization of organic azo pollutants will not only reduce plant toxicity, but can also be a nutrient source for plants. Such PGPB could have a practical application for the recycling of industrial wastewater contaminated with dyes that could be used as an irrigation source to improve plant biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajaz M, Shakeel S, Rehman A (2020) Microbial use for azo dye degradation—a strategy for dye bioremediation. Int Microbiol 23(2):149–159

    CAS  PubMed  Google Scholar 

  • Akan J, Abdulrahman F, Ayodele J, Ogugbuaja V (2009) Impact of tannery and textile effluent on the chemical characteristics of challawa river, Kano state, Nigeria. Aust J Basic Appl Sci 3(3)

  • Akhtar S, Khan AA, Husain Q (2005) Potential of immobilized bitter gourd (momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere 60(3):291–301

    CAS  PubMed  Google Scholar 

  • Alderete BL, da Silva J, Godoi R, da Silva FR, Taffarel SR, da Silva LP et al (2021) Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after advanced oxidation process treatment. Chemosphere 263:128291

    CAS  PubMed  Google Scholar 

  • Ayed L, Mahdhi A, Cheref A, Bakhrouf A (2011) Decolorization and degradation of azo dye methyl red by an isolated sphingomonas paucimobilis: Biotoxicity and metabolites characterization. Desalination 274(1):272–277

    CAS  Google Scholar 

  • Babu BR, Parande A, Raghu S, Kumar TP (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci

  • Balamurugan B, Thirumarimurugan M, Kannadasan T (2011) Anaerobic degradation of textile dye bath effluent using halomonas sp. Bioresour Technol 102(10):6365–6369

    CAS  PubMed  Google Scholar 

  • Cakmakci R, Erat M, Erdogan U, Donmez MF (2007) The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    CAS  Google Scholar 

  • Celik L, Ozturk A, Abdullah MI (2012) Biodegradation of reactive red 195 azo dye by the bacterium Rhodopseudomonas palustris 51ATA. African J Microbiol Res 6:120–126

    CAS  Google Scholar 

  • Chacko JT, Subramaniam K (2011) Enzymatic degradation of azo dyes—a review. Int J Environ Sci 1(6):1250–1260

    Google Scholar 

  • Chandanshive VV, Kadam SK, Khandare RV, Kurade MB, Jeon BH, Jadhav JP, Govindwar SP (2018) In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere 210:968–976

    CAS  PubMed  Google Scholar 

  • Chang J-S, Kuo T-S, Chao Y-P, Ho J-Y, Lin P-J (2000) Azo dye decolorization with a mutant escherichia coli strain. Biotech Lett 22(9):807–812

    CAS  Google Scholar 

  • Chang J-S, Chen B-Y, Lin YS (2004) Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from escherichia coli strain no3. Bioresour Technol 91(3):243–248

    CAS  PubMed  Google Scholar 

  • Chen H, Xu H, Heinze TM, Cerniglia CE (2009) Decolorization of water and oil-soluble azo dyes by lactobacillus acidophilus and lactobacillus fermentum. J Ind Microbiol Biotechnol 36(12):1459–1466

    CAS  PubMed  Google Scholar 

  • Chung K-T, Fulk GE, Egan M (1978) Reduction of azo dyes by intestinal anaerobes. Appl Environ Microbiol 35(3):558–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84

    Google Scholar 

  • Doble M, Kumar A (2005) Biotreatment of industrial effluents. Butterworth-Heinemann, London

    Google Scholar 

  • Ekanayake MS, Udayanga D, Wijesekara I, Manage P (2021) Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. Environ Sci Pollut Res 1–11

  • Elisangela F, Andrea Z, Fabio DG, de Menezes Cristiano R, Regina DL, Artur C-P (2009) Biodegradation of textile azo dyes by a facultative staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeterior Biodegrad 63(3):280–288

    CAS  Google Scholar 

  • Ghodake G, Jadhav S, Dawkar V, Govindwar S (2009a) Biodegradation of diazo dye direct brown MR by acinetobacter calcoaceticus NCIM 2890. Int Biodeterior Biodegrad 63(4):433–439

    CAS  Google Scholar 

  • Ghodake G, Kalme S, Jadhav J, Govindwar S (2009b) Purification and partial characterization of lignin peroxidase from acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes. Appl Biochem Biotechnol 152(1):6–14. https://doi.org/10.1007/s12010-008-8258-4

    Article  CAS  PubMed  Google Scholar 

  • Ghodake G, Jadhav U, Tamboli D, Kagalkar A, Govindwar S (2011) Decolorization of textile dyes and degradation of mono-azo dye amaranth by acinetobacter calcoaceticus NCIM 2890. Indian J Microbiol 51(4):501–508. https://doi.org/10.1007/s12088-011-0131-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41(3):277–281

    CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    CAS  PubMed  Google Scholar 

  • Guo J, Kang L, Wang X, Yang J (2010) Decolorization and Degradation of Azo Dyes by Redox Mediator System with Bacteria. In book: Biodegradation of Azo Dyes. Springer

  • Hardoim PR, Hardoim CC, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS ONE 7(2):e30438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan W, Farooq U, Ahmad M, Athar M, Khan MA (2017) Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye. Arab J Chem 10:S1512–S1522

    CAS  Google Scholar 

  • Hsueh C-C, Chen B-Y, Yen C-Y (2009) Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. J Hazard Mater 167(1):995–1001

    CAS  PubMed  Google Scholar 

  • Huang C-J, Liu Y-H, Yang K-H, Chen C-Y (2012) Physiological response of bacillus cereus C1L-induced systemic resistance in lily against botrytis leaf blight. Eur J Plant Pathol 134(1):1–12

    CAS  Google Scholar 

  • Humphrey TV, Richman AS, Menassa R, Brandle JE (2006) Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Mol Biol 61:47–62

    CAS  PubMed  Google Scholar 

  • Imron MF, Kurniawan B, Soegianto A, Wahyudianto FE (2019) Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02206

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi T, Iyengar L, Singh K, Garg S (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Bioresour Technol 99(15):7115–7121

    CAS  PubMed  Google Scholar 

  • Kabra AN, Khandare RV, Kurade MB, Govindwar SP (2011) Phytoremediation of a sulphonated azo dye green he4b by Glandularia pulchella (sweet) Tronc. (Moss Verbena). Environ Sci Pollut

  • Kagalkar AN, Jagtap UB, Jadhav JP, Bapat VA, Govindwar SP (2009) Biotechnological strategies for phytoremediation of the sulfonated azo dye direct red 5B using blumea malcolmii hook. Bioresour Technol 100(18):4104–4110

    CAS  PubMed  Google Scholar 

  • Kagalkar AN, Jagtap UB, Jadhav JP, Govindwar SP, Bapat VA (2010) Studies on phytoremediation potentiality of Typhonium flagelliforme for the degradation of Brilliant Blue R. Planta 232(1):271–285

    CAS  PubMed  Google Scholar 

  • Kang S-M, Joo G-J, Hamayun M, Na C-I, Shin D-H, Kim HY, Hong J-K, Lee I-J (2009) Gibberellin production and phosphate solubilization by newly isolated strain of acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31(2):277–281

    CAS  PubMed  Google Scholar 

  • Kazaz S, Erbas S, Baydar H (2013) Breaking seed dormancy in oil rose (Rosa damascena mill.) by microbial inoculation. Afr J Biotechnol 9(39):6503–6508

    Google Scholar 

  • Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ (2020) Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20(1):1

    Google Scholar 

  • Khandare RV, Rane NR, Waghmode TR, Govindwar SP (2012) Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ Sci Pollut Res 19(5):1709–1718

    CAS  Google Scholar 

  • Khandare R, Kabra A, Awate A, Govindwar S (2013) Synergistic degradation of diazo dye direct red 5B by Portulaca grandiflora and Pseudomonas putida. Int J Environ Sci Technol 10(5):1039–1050

    CAS  Google Scholar 

  • Khataee A, Movafeghi A, Torbati S, Salehi Lisar S, Zarei M (2012) Phytoremediation potential of duckweed (Lemna minor L.) in degradation of CI Acid Blue 92: artificial neural network modeling. Ecotoxicol Environ Saf 80:291–298

    CAS  PubMed  Google Scholar 

  • Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. Strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl Environ Microbiol 63(9):3691–3694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulla HG, Klausener F, Meyer U, Lüdeke B, Leisinger T (1983) Interference of aromatic sulfo groups in the microbial degradation of the azo dyes Orange I and Orange II. Arch Microbiol 135(1):1–7

    CAS  Google Scholar 

  • Kurade MB, Waghmode TR, Govindwar SP (2011) Preferential biodegradation of structurally dissimilar dyes from a mixture by Brevibacillus laterosporus. J Hazard Mater 192(3):1746–1755

    CAS  PubMed  Google Scholar 

  • Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22(1):55–61

    CAS  PubMed  Google Scholar 

  • Mahajan P, Kaushal J (2020) Phytoremediation of azo dye methyl red by macroalgae Chara vulgaris L.: kinetic and equilibrium studies. Environ Sci Pollut Res 27:26406–26418. https://doi.org/10.1007/s11356-020-08977-w

    Article  CAS  Google Scholar 

  • Mahajan P, Kaushal J, Upmanyu A, Bhatti J (2019) Assessment of phytoremediation potential of Chara vulgaris to treat toxic pollutants of textile effluent. J Toxicol. https://doi.org/10.1155/2019/8351272

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmood S, Khalid A, Mahmood T, Arshad M, Ahmad R (2013) Potential of newly isolated bacterial strains for simultaneous removal of hexavalent chromium and reactive black-5 azo dye from tannery effluent. J Chem Technol Biotechnol 88(8):1506–1513

    CAS  Google Scholar 

  • Mahmood S, Khalid A, Arshad M, Mahmood T, Crowley DE (2016) Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit Rev Biotechnol 36(4):639–651

    CAS  PubMed  Google Scholar 

  • Mahmood F, Shahid M, Hussain S, Haider MZ, Shahzad T, Ahmed T et al (2020) Bacillus firmus strain FSS2C ameliorated oxidative stress in wheat plants induced by azo dye (reactive black-5). 3

  • Mbuligwe SE (2005) Comparative treatment of dye-rich wastewater in engineered wetland systems (EWSs) vegetated with different plants. Water Res 39(2):271–280

    CAS  PubMed  Google Scholar 

  • Modi H, Rajput G, Ambasana C (2010) Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresour Technol 101(16):6580–6583

    CAS  PubMed  Google Scholar 

  • Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2009) A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (typha angustifolia linn.). Water Sci Technol 60(6)

  • Ogugbue CJ, Sawidis T, Oranusi NA (2012) Bioremoval of chemically different synthetic dyes by Aeromonas hydrophila in simulated wastewater containing dyeing auxiliaries. Ann Microbiol 62(3):1141–1153

    CAS  Google Scholar 

  • Ong S, Uchiyama K, Inadama D, Ishida Y, Yamagiwa K (2009) Phytoremediation of industrial effluent containing azo dye by model up-flow constructed wetland. Chin Chem Lett 20(2):225–228

    CAS  Google Scholar 

  • Page V, Schwitzguébel J-P (2009) The role of cytochromes P450 and peroxidases in the detoxification of sulphonated anthraquinones by rhubarb and common sorrel plants cultivated under hydroponic conditions. Environ Sci Pollut Res 16(7):805–816

    CAS  Google Scholar 

  • Patil AV, Jadhav JP (2013) Evaluation of phytoremediation potential of Tagetes patula L. for the degradation of textile dye reactive blue 160 and assessment of the toxicity of degraded metabolites by cytogenotoxicity. Chemosphere 92(2):225–232

    CAS  PubMed  Google Scholar 

  • Priya SE, Selvan SP (2014) Water hyacinth (Eichhornia crassipes)—an efficient and economic adsorbent for textile effluent treatment—a review. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.03.002

    Article  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rane NR, Chandanshive VV, Watharkar AD, Khandare RV, Patil TS, Pawar PK, Govindwar SP (2015) Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: an anatomical, enzymatic and pilot scale study. Water Res 83:271–281

    CAS  PubMed  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    CAS  PubMed  Google Scholar 

  • Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66(4):1429–1434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadhasivam S, Savitha S, Swaminathan K (2009) Redox-mediated decolorization of recalcitrant textile dyes by trichoderma harzianum wl1 laccase. World J Microbiol Biotechnol 25(10):1733–1741. https://doi.org/10.1007/s11274-009-0069-4

    Article  CAS  Google Scholar 

  • Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae strain CR11. Chemosphere 86(8):847–852

    CAS  PubMed  Google Scholar 

  • Saikia R, Gogoi D, Mazumder S, Yadav A, Sarma R, Bora T, Gogoi B (2011) Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. Microbiol Res 166(3):216–225

    CAS  PubMed  Google Scholar 

  • Sarayu K, Sandhya S (2010) Aerobic biodegradation pathway for Remazol orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol 160(4):1241–1253

    CAS  PubMed  Google Scholar 

  • Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R (2017) Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng 2(4):121–131

    Google Scholar 

  • Seesuriyachan P, Takenaka S, Kuntiya A, Klayraung S, Murakami S, Aoki K (2007) Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization. Water Res 41(5):985–992

    CAS  PubMed  Google Scholar 

  • Selvaraj V, Karthika TS, Mansiya C, Alagar M (2020) An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J Mol Struct 129195

  • Shafqat M, Khalid A, Mahmood T, Siddique MT, Han J-I, Habteselassie MY (2017) Evaluation of bacteria isolated from textile wastewater and rhizosphere to simultaneously degrade azo dyes and promote plant growth. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5357

    Article  Google Scholar 

  • Shahid M, Mahmood F, Hussain S, Shahzad T, Haider MZ, Noman M et al (2018) Enzymatic detoxification of azo dyes by a multifarious Bacillus sp. strain MR-1/2-bearing plant growth-promoting characteristics. 3 Biotech 8(10):1–12

    Google Scholar 

  • Singh SN (2015) Microbial degradation of synthetic dyes in wastewaters. Springer, Berlin

    Google Scholar 

  • Specht K, Platzek T (1995) Textile dyes and finishes-remarks to toxicological and analytical aspects. Deutsche Lebensmittel-Rundschau (Germany)

  • Tan KA, Morad N, Ooi JQ (2016) Phytoremediation of methylene blue and methyl orange using Eichhornia crassipes. Int J Environ Sci Dev 7(10):724

    CAS  Google Scholar 

  • Telke A, Kalyani D, Jadhav J, Govindwar S (2008) Kinetics and mechanism of reactive red 141 degradation by a bacterial isolate rhizobium radiobacter MTCC 8161. Acta Chim Slov 55:320–329

    CAS  Google Scholar 

  • Telke AA, Kagalkar AN, Jagtap UB, Desai NS, Bapat VA, Govindwar SP (2011) Biochemical characterization of laccase from hairy root culture of Brassica juncea L. and role of redox mediators to enhance its potential for the decolorization of textile dyes. Planta 234(6):1137–1149

    CAS  PubMed  Google Scholar 

  • Tony BD, Goyal D, Khanna S (2009a) Decolorization of direct red 28 by mixed bacterial culture in an up-flow immobilized bioreactor. J Ind Microbiol Biotechnol 36(7):955–960

    CAS  PubMed  Google Scholar 

  • Tony BD, Goyal D, Khanna S (2009b) Decolorization of textile azo dyes by aerobic bacterial consortium. Int Biodeterior Biodegrad 63(4):462–469

    CAS  Google Scholar 

  • Torbati S, Khataee A, Movafeghi A (2014) Application of watercress (nasturtium officinale r. Br.) for biotreatment of a textile dye: investigation of some physiological responses and effects of operational parameters. Chem Eng Res Des

  • Tripathi A, Srivastava S (2011) Ecofriendly treatment of azo dyes: biodecolorization using bacterial strains. Int J Biosci Biochem Bioinform 1:37–40

    Google Scholar 

  • Varjani S, Rakholiya P, Ng HY, You S, Teixeira JA (2020) Microbial degradation of dyes: an overview. Bioresour Technol 123728

  • Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainio L, Devos N, Weekers F, Kevers C, Thonart P (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27(3):243–258

    Google Scholar 

  • Wanyonyi WC, Onyari JM, Shiundu PM, Mulaa FJ (2019) Effective biotransformation of reactive black 5 dye using crude protease from Bacillus cereus strain KM201428. Energy Procedia 157:815–824

    CAS  Google Scholar 

  • Watharkar AD, Jadhav JP (2014) Detoxification and decolorization of a simulated textile dye mixture by phytoremediation using Petunia grandiflora and Gailardia grandiflora: a plant–plant consortial strategy. Ecotoxicol Environ Saf 103:1–8

    CAS  PubMed  Google Scholar 

  • Watharkar AD, Khandare RV, Kamble AA, Mulla AY, Govindwar SP, Jadhav JP (2013a) Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye Brilliant Blue G. Environ Sci Pollut Res 20(2):939–949

    CAS  Google Scholar 

  • Watharkar AD, Rane NR, Patil SM, Khandare RV, Jadhav JP (2013b) Enhanced phytotransformation of navy blue RX dye by Petunia grandiflora Juss. with augmentation of rhizospheric Bacillus pumilus strain PgJ and subsequent toxicity analysis. Bioresour Technol 142:246–254

    CAS  PubMed  Google Scholar 

  • Wu Z, Zhao Y, Kaleem I, Li C (2011) Preparation of calcium–alginate microcapsuled microbial fertilizer coating Klebsiella oxytoca Rs-5 and its performance under salinity stress. Eur J Soil Biol 47(2):152–159

    CAS  Google Scholar 

  • Yaseen DA, Scholz M (2019) Impact of pH on the treatment of artificial textile wastewater containing azo dyes using pond systems. Int J Environ Res 13(2):367–385

    CAS  Google Scholar 

  • Yu L, Li W-W, Lam MH-W, Yu H-Q, Wu C (2012) Isolation and characterization of a klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production. Appl Microbiol Biotechnol 95(1):255–262

    CAS  PubMed  Google Scholar 

  • Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53(4):1155–1163

    CAS  PubMed  Google Scholar 

  • Zhao Z, Wang Q, Wang K, Brian K, Liu C, Gu Y (2010a) Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour Technol 101(1):292–297

    CAS  PubMed  Google Scholar 

  • Zhao L, Zhou J, Jia Y, Chen J (2010b) Biodecolorization of acid red gr by a newly isolated

Download references

Acknowledgements

The research work was supported by the Joint Laboratory (2021-2023) of the National Research Council Italy and PMAS Arid Agriculture University Rawalpindi-Pakistan  “Selection and Evaluation of plant growth promoting rhizobacteria to increase climate resilient crop production.” The authors really appreciate the contributions of Dr. Luqman Riaz, (University of Narowal) for his input in copy editing and finalizing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in writing and preparation of the manuscripts. Where the Prime author and corresponding author were mainly involved in structuring and finalizing the article.

This article was suggested and designed by all of the writers. Mateen Shafqat wrote the original version; while, Shahid Mahmood, Samia Qadeer, and Muzammil Anjum contributed to the text in part. Azeem Khalid and Mauro Centritto evaluated and updated the entire text. Tariq Mahmood, completed the final proofreading and copy editing.

Corresponding author

Correspondence to A. Khalid.

Ethics declarations

Competing interests

The Author’s declare no Competing Interest for current work.

Additional information

Editorial responsibility: S. Mirkia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafqat, M., Mahmood, S., Anjum, M. et al. The nexus of phyto-assisted plant growth-promoting bacterial application for bioremediation of azo dye. Int. J. Environ. Sci. Technol. 21, 5269–5284 (2024). https://doi.org/10.1007/s13762-023-05414-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05414-6

Keywords

Navigation