Skip to main content
Log in

Comparison between carbon nanotubes and molybdenum trioxide nanoparticles embedded in polymeric membrane for environmental remediation

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a comparison was conducted involving novel chitosan/polyvinyl alcohol-based membranes comprising carbon nanotubes and molybdenum trioxide nanoparticles. This comparison's primary focus was to assess synthesized membranes' effectiveness in removing methyl red from aqueous solutions. The Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the presence of specific functional groups and homogeneous dispersion of carbon nanotubes and molybdenum trioxide nanoparticles within the membranes, respectively. The membranes underwent additional characterization using various swelling parameters to assess mechanical strength and cross-linking. These parameters included swelling over time in water, swelling in electrolyte solutions, and different pH solutions and gel fraction analysis. Furthermore, the diffusion of water adhered Fickian diffusion principle. Various adsorption parameters were employed, including batch studies, isotherm studies at different pH levels, and temperature studies. The results of the batch study highlighted that chitosan/polyvinyl alcohol/carbon nanotubes membrane exhibited the highest adsorption, reaching approximately 9.7 mM/g (98%) and achieving equilibrium within 60 min. The maximum adsorption of methyl red was observed at pH 7 and decreased with increasing temperature. Moreover, the experimental data were simulated using kinetic models (pseudo-first-order, pseudo-second-order, Elovich model, and diffusion model) and isothermal models (Freundlich, Langmuir, and Langmuir Freundlich). Data indicated that pseudo-first order was the best-fitted model, which confirms physisorption. Among the isothermal models, Langmuir exhibited the most suitable fit, confirming that single-layer adsorption had taken place on the adsorbent surface. Thermodynamic parameters were studied, ensuring the adsorption process was exothermic and spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Açıkel YS, Göze B (2017) Removal of Methyl Red, a cationic dye, acid blue 113, an anionic dye, from wastewaters using chitin and chitosan: influence of copper ions. Desalin Water Treat 73:01

    Google Scholar 

  • Adusei JK, Agorku ES, Voegborlo RB, Ampong FK, Danu BY, Amarh FAJSA (2022) Removal of methyl red in aqueous systems using synthesized NaAlg-g-CHIT/nZVI adsorbent. Sci Afr 17:e01273

    CAS  Google Scholar 

  • Afanga H, Zazou H, Titchou FE, Rakhila Y, Akbour RA, Elmchaouri A, Ghanbaja J, Hamdani M (2020) Integrated electrochemical processes for textile industry wastewater treatment: system performances and sludge settling characteristics. Sustain Environ Res 30:2

    Article  CAS  Google Scholar 

  • Ahmad MA, Ahmed NAB, Adegoke KA, Bello OSJCDC (2019) Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus). Chem Data Collect 22:100249

    Article  CAS  Google Scholar 

  • Ahmad MF, Hassan S, Imran Z, Mazhar D, AfzalUllah SSAJ (2023) Green approach to water purification: investigating methyl orange dye adsorption using chitosan/polyethylene glycol composite membrane. J Polym Environ. https://doi.org/10.1007/s10924-023-02994-9

    Article  Google Scholar 

  • Alabbad EA (2020) Efficient removal of methyl orange from wastewater by polymeric chitosan-iso-vanillin. Open Chem J. https://doi.org/10.2174/1874842202007010016

    Article  Google Scholar 

  • Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393

    Article  CAS  Google Scholar 

  • Alqaragully MB (2014) Removal of textile dyes (maxilon blue, and methyl orange) by date stones activated carbon. Int J Adv Res Chem Sci 1:48–59

    Google Scholar 

  • Alsaiari NS, Osman H, Amari A, Tahoon MAJM (2022) The Synthesis of metal–organic-framework-based ternary nanocomposite for the adsorption of organic dyes from aqueous solutions. Magnetochemistry 8:133

    Article  CAS  Google Scholar 

  • Alver E, Metin AÜ (2012) Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chem Eng J 200:59–67

    Article  Google Scholar 

  • Amari A, Yadav VK, Pathan SK, Singh B, Osman H, Choudhary N, Khedher KM, Basnet A (2023) remediation of methyl red dye from aqueous solutions by using biosorbents developed from floral waste. Adsorpt Sci Technol. https://doi.org/10.1155/2023/1532660

    Article  Google Scholar 

  • Amini M, Shekari Z, Hosseinifard M, Seidi F (2019) Preparation and characterization of thin-film nanocomposite membrane incorporated with MoO3 nanoparticles with high flux performance for forward osmosis. ChemistrySelect 4:7832–7837

    Article  CAS  Google Scholar 

  • Ashoka H, Inamdar S (2010) Adsorption removal of methyl red from aqueous solutions with treated sugarcane bagasse and activated carbon-a comparative study. Glob J Environ Res 4:175–182

    CAS  Google Scholar 

  • Barathi S, Karthik C, Nadanasabapathi S, Padikasan IA (2020) Biodegradation of textile dye reactive blue 160 by Bacillus firmus (Bacillaceae: Bacillales) and non-target toxicity screening of their degraded products. Toxicol Rep 7:16–22

    Article  CAS  PubMed  Google Scholar 

  • Bibi S, Yasin T, Hassan S, Riaz M, Nawaz M (2015) Chitosan/CNTs green nanocomposite membrane: synthesis, swelling and polyaromatic hydrocarbons removal. Mater Sci Eng, C 46:359–365

    Article  CAS  Google Scholar 

  • Bibi A, Rehman S-u, Faiz R, Akhtar T, Nawaz M, Bibi S (2019) Effect of surfactants on swelling capacity and kinetics of alginate-chitosan/CNTs hydrogel. Mater Res Express 6:085065

    Article  CAS  ADS  Google Scholar 

  • Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  CAS  Google Scholar 

  • Bulut Y, Aydın H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194:259–267

    Article  CAS  Google Scholar 

  • Cheng YK, Yeang QW, Mohamed AR, Tan SH (2014) Study on the reusability of multiwalled carbon nanotubes in biodegradable chitosan nanocomposites. Polym-Plast Technol Eng 53:1236–1250

    Article  CAS  Google Scholar 

  • da Silva RC, de Aguiar SB, da Cunha PLR, de Paula RCM, Feitosa JP (2020) Effect of microwave on the synthesis of polyacrylamide-g-chitosan gel for azo dye removal. React Funct Polym 148:104491

    Article  Google Scholar 

  • Dey AK, Dey A, Goswami RJWT (2022) Selection of optimal performance characteristics during adsorption of methyl red dye using sodium carbonate treated jute fibre. Water Treat 260:187–202

    Google Scholar 

  • Dim PE (2013) Adsorption of methyl red and methyl orange using different tree bark powder. Adsorption 4:330–338

    Google Scholar 

  • Dong Z, Xu H, Bai Z, Wang H, Zhang L, Luo X, Tang Z, Luque R, Xuan J (2015) Microfluidic synthesis of high-performance monodispersed chitosan microparticles for methyl orange adsorption. RSC Adv 5:78352–78360

    Article  CAS  ADS  Google Scholar 

  • El-Berry MF, Sadeek SA, Abdalla AM, Nassar MY (2020) Microwave-assisted fabrication of copper nanoparticles utilizing different counter ions: an efficient photocatalyst for photocatalytic degradation of safranin dye from aqueous media. Mater Res Bull 133:111048

    Article  Google Scholar 

  • Gaikwad R, Misal S (2010) Sorption studies of methylene blue on silica gel. Int J Chem Eng Appl 1:342

    CAS  Google Scholar 

  • Ghaedi M, Kokhdan SN (2012) Oxidized multiwalled carbon nanotubes for the removal of methyl red (MR): kinetics and equilibrium study. Desalin Water Treat 49:317–325

    Article  CAS  Google Scholar 

  • Gizawy MA, Shamsel-Din H, Abdelmonem IM, Ibrahim MI, Mohamed LA, Metwally E (2020) Synthesis of chitosan-acrylic acid/multiwalled carbon nanotubes composite for theranostic 47Sc separation from neutron irradiated titanium target. Int J Biol Macromol 163:79–86

    Article  CAS  PubMed  Google Scholar 

  • Habiba U, Afifi AM, Salleh A, Ang BC (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322:182–194

    Article  CAS  PubMed  Google Scholar 

  • Hadi P, Guo J, Barford J, McKay G (2016) Multilayer dye adsorption in activated carbons facile approach to exploit vacant sites and interlayer charge interaction. Environ Sci Technol 50:5041–5049

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hamad HN, Idrus SJP (2022) Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: a review. Polymers 14:783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna DH, Lotfy VF, Basta AH, Saad GR (2020) Comparative evaluation for controlling release of niacin from protein-and cellulose-chitosan based hydrogels. Int J Biol Macromol 150:228–237

    Article  CAS  PubMed  Google Scholar 

  • Hassan S, Yasin T, Imran Z, Batool S (2016a) Silane based novel crosslinked chitosan/poly (vinyl alcohol) membrane: structure, characteristic and adsorption behaviour. J Inorg Organomet Polym Mater 26:208–218

    Article  CAS  Google Scholar 

  • Hassan S, Yasin T, Imran Z, Batool S (2016) Silane based novel crosslinked chitosan/poly (vinyl alcohol) membrane: structure, characteristic and adsorption behaviour. J Inorg Organomet Polym Mater 26:208–218

    Article  CAS  Google Scholar 

  • Hossain MZ (2015) Water: the most precious resource of our life. Glob J Adv Res 2:1–11

    Google Scholar 

  • Hynes NRJ, Kumar JS, Kamyab H, Sujana JAJ, Al-Khashman OA, Kuslu Y, Ene A, Suresh B (2020) Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector—a comprehensive review. J Clean Prod 272:122636

    Article  CAS  Google Scholar 

  • Islam A, Yasin T (2012) Controlled delivery of drug from pH sensitive chitosan/poly (vinyl alcohol) blend. Carbohyd Polym 88:1055–1060

    Article  CAS  Google Scholar 

  • Islam A, Yasin T, Bano I, Riaz M (2012) Controlled release of aspirin from pH-sensitive chitosan/poly (vinyl alcohol) hydrogel. J Appl Polym Sci 124:4184–4192

    Article  CAS  Google Scholar 

  • Islam A, Riaz M, Yasin T (2013) Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. Int J Biol Macromol 59:119–124

    Article  CAS  PubMed  Google Scholar 

  • Iuliano M, Ponticorvo E, Cirillo C, Sarno M (2022) A new nanocomposite from vesuvian slope pinecones for azo-dyes removal. Ind Eng Chem Res 61(5):1965–1976

    Article  CAS  Google Scholar 

  • Kouakou LPM-S, Karidioula D, Manouan MRW, Pohan AGL, Cissé G, Konan LK, Andji-Yapi JYJCPL (2023) Use of two clays from Côte d’Ivoire for the adsorption of methyl red from aqueous medium. Chem Phys Lett 810:140183

    Article  CAS  Google Scholar 

  • Kumbar SM, Selvam T, Gellermann C, Storch W, Ballweg T, Breu J, Sextl G (2010) ORMOCERs (organic–inorganic hybrid copolymers)-zeolite beta (BEA) nanocomposite membranes for gas separation applications. J Membr Sci 347:132–140

    Article  CAS  Google Scholar 

  • Larry W (2006) World water day. A billion people worldwide lack safe drinking

  • Lin J, Zhan Y (2012) Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites. Chem Eng J 200:202–213

    Article  Google Scholar 

  • Mahdavinia G, Pourjavadi A, Hosseinzadeh H, Zohuriaan M (2004) Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties. Eur Polymer J 40:1399–1407

    Article  CAS  Google Scholar 

  • Moghaddam AZ, Jazi ME, Allahrasani A, Ganjali MR, Badiei A (2020) Removal of acid dyes from aqueous solutions using a new eco-friendly nanocomposite of CoFe2O4 modified with Tragacanth gum. J Appl Polym Sci 137:48605

    Article  CAS  Google Scholar 

  • Mohamed HG, Aboud AA, Abd El-Salam H (2021) Synthesis and characterization of chitosan/polyacrylamide hydrogel grafted poly (N-methylaniline) for methyl red removal. Int J BiolMacromol 187:240–250

    Article  CAS  Google Scholar 

  • Mohammad A-T, Abdulhameed AS, Jawad AH (2019) Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: methyl orange adsorption and mechanism studies. Int J Biol Macromol 129:98–109

    Article  CAS  PubMed  Google Scholar 

  • Mpelane A, Katwire DM, Mungondori HH, Nyamukamba P, Taziwa RT (2020) Application of novel C-TiO2-CFA/PAN photocatalytic membranes in the removal of textile dyes in wastewater. Catalysts 10:909

    Article  CAS  Google Scholar 

  • Muniz FTL, Miranda MAR, Morilla dos Santos C, Sasaki JM (2016) The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr Sect A: Found Adv 72:385–390

    Article  MathSciNet  CAS  Google Scholar 

  • Murcia-Salvador A, Pellicer JA, Fortea MI, Gómez-López VM, Rodríguez-López MI, Núñez-Delicado E, Gabaldón JA (2019) Adsorption of Direct Blue 78 using chitosan and cyclodextrins as adsorbents. Polymers 11:1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthuraman G, Teng TT (2009) Extraction of methyl red from industrial wastewater using xylene as an extractant. Prog Nat Sci 19:1215–1220

    Article  CAS  Google Scholar 

  • Neolaka YA, Lawa Y, Naat J, Lalang AC, Widyaningrum BA, Ngasu GF, Niga KA, Darmokoesoemo H, Iqbal M, Kusuma HS (2023) Adsorption of methyl red from aqueous solution using Bali cow bones (Bos javanicus domesticus) hydrochar powder. Results Eng 17:100824

    Article  CAS  Google Scholar 

  • Ngah WW, Teong L, Hanafiah MM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohyd Polym 83:1446–1456

    Article  Google Scholar 

  • Oliveira JM, Silva MR, Issa CG, Corbi JJ, Damianovic MH, Foresti E (2020) Intermittent aeration strategy for azo dye biodegradation: a suitable alternative to conventional biological treatments? J Hazard Mater 385:121558

    Article  CAS  PubMed  Google Scholar 

  • Oluwatosin ED, Oluwaseun AA (2021) Removal of congo red and methyl red using low density polyethylene-chitosan nanoparticles biocomposite in single and binary-component system. Earthline J Chem Sci 5:307–327

    Google Scholar 

  • Öztürk A, Malkoc E (2014) Adsorptive potential of cationic basic yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: mass transfer analysis, kinetic and equilibrium profile. Appl Surf Sci 299:105–115

    Article  ADS  Google Scholar 

  • Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M (2011) FT-IR study of montmorillonite–chitosan nanocomposite materials. Spectrochim Acta Part A Mol Biomol Spectrosc 79:784–788

    Article  CAS  ADS  Google Scholar 

  • Ratnamala G, Brajesh K (2013) Biosorption of remazol navy blue dye from an aqueous solution using pseudomonas putida. Int J Sci, Environ Technol 2:80–89

    Google Scholar 

  • Saha B, Debnath A, Saha B (2022) Fabrication of PANI@ Fe–Mn–Zr hybrid material and assessments in sono-assisted adsorption of methyl red dye: uptake performance and response surface optimization. J Indian Chem Soc 99:100635

    Article  CAS  Google Scholar 

  • Sahebjamee N, Soltanieh M, Mousavi SM, Heydarinasab A (2020) Preparation and characterization of porous chitosan–based membrane with enhanced copper ion adsorption performance. React Funct Polym 154:104681

    Article  CAS  Google Scholar 

  • Sahoo C, Gupta A, Pal A (2005) Photocatalytic degradation of Methyl Red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2. Desalination 181:91–100

    Article  CAS  Google Scholar 

  • Santos-Beltrán M, Paraguay-Delgado F, García R, Antúnez-Flores W, Ornelas-Gutiérrez C, Santos-Beltrán A (2017) Fast methylene blue removal by MoO3 nanoparticles. J Mater Sci: Mater Electron 28:2935–2948

    Google Scholar 

  • Singh S, Gupta B (2017) Development and characterization of nanosoy-reinforced dextran nanocomposite membranes. J Appl Polym Sci. https://doi.org/10.1002/app.44655

    Article  Google Scholar 

  • Siregar MZ, Alfian Z, Agusnar H, Marpaung H (2015) Preparation and characterization carbon nanotubes-chitosan nanocomposite by using oil palm shell and horseshoe crab shell. Int J Adv Res Chem Sci (IJARCS) 2:6–13

    Google Scholar 

  • Sulaiman S, RaS A, Ismail I, Man HC, Yusof KFM, Abba MU, Katibi KK (2021) Adsorptive removal of copper (II) ions from aqueous solution using a magnetite nano-adsorbent from mill scale waste: synthesis, characterization, adsorption and kinetic modelling studies. Nanoscale Res Lett 16:1–17

    Article  Google Scholar 

  • Syamsu K, Fahma F, Pari G (2022) Ethylene adsorption on activated carbon paper liner: a model kinetic study. In: IOP conference series: earth and environmental science. IOP Publishing. p 012022

  • Tan I, Ahmad A, Hameed B (2008) Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 225:13–28

    Article  CAS  Google Scholar 

  • Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohyd Polym 113:115–130

    Article  CAS  Google Scholar 

  • Vatanpour V, Salehi E, Sahebjamee N, Ashrafi M (2020) Novel chitosan/polyvinyl alcohol thin membrane adsorbents modified with detonation nanodiamonds: preparation, characterization, and adsorption performance. Arab J Chem 13:1731–1740

    Article  CAS  Google Scholar 

  • Vimala K, Yallapu MM, Varaprasad K, Reddy NN, Ravindra S, Naidu NS, Raju KM (2011) Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2:55

    Article  CAS  Google Scholar 

  • Wang J, Liu G, Li T, Zhou C (2015) Physicochemical studies toward the removal of Zn (II) and Pb (II) ions through adsorption on montmorillonite-supported zero-valent iron nanoparticles. RSC Adv 5:29859–29871

    Article  ADS  Google Scholar 

  • Wittmar AS, Böhler H, Kayali AL, Ulbricht M (2020) One-step preparation of porous cellulose/chitosan macro-spheres from ionic liquid-based solutions. Cellulose 27:5689–5705

    Article  CAS  Google Scholar 

  • Zaheer Z, Aisha A-A, Aazam ESJJoML, (2019) Adsorption of methyl red on biogenic Ag@ Fe nanocomposite adsorbent: Isotherms, kinetics and mechanisms. J Mol Liq 283:287–298

    Article  CAS  Google Scholar 

  • Zhang Y, Park S-J (2019) Fabrication of MoO3 nanowire-based membrane devices for the selective adsorption of cationic dyes from aqueous solutions with high performance and reusability. Micromachines 10:586

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhao M, Cheng Q, Wang C, Li H, Han X, Fan Z, Su G, Pan D, Li ZJC (2021) Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: a review. Chemosphere 279:130927

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Ma T, Zhao S, Rong H, Tian Y, Zhu G (2020a) Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chem Eng J 382:122893

    Article  CAS  Google Scholar 

  • Zhao S, Wen Y, Du C, Tang T, Kang DJCEJ (2020) Introduction of vacancy capture mechanism into defective alumina microspheres for enhanced adsorption of organic dyes. Chem Eng J 402:126180

    Article  CAS  Google Scholar 

  • Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365

    Article  CAS  PubMed  Google Scholar 

  • Zhu H-Y, Fu Y-Q, Jiang R, Yao J, Xiao L, Zeng G-M (2012) Novel magnetic chitosan/poly (vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Biores Technol 105:24–30

    Article  CAS  Google Scholar 

  • Zhu H, Fu Y, Jiang R, Yao J, Liu L, Chen Y, Xiao L, Zeng G (2013) Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution. Appl Surf Sci 285:865–873

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their heartfelt gratitude to the chemistry and physics departments of COMSATS University Islamabad for their unwavering and invaluable support throughout our research journey. The authors express their deep appreciation to COMSATS University Islamabad for playing an integral role in shaping and contributing to the success of this project.

Funding

There was no funding found with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests that can influence the work reported in this research paper.

Additional information

Editorial responsibility: Ta Yeong Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbass, A., Hassan, S., Imran, Z. et al. Comparison between carbon nanotubes and molybdenum trioxide nanoparticles embedded in polymeric membrane for environmental remediation. Int. J. Environ. Sci. Technol. 21, 5705–5718 (2024). https://doi.org/10.1007/s13762-023-05370-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05370-1

Keywords

Navigation