Skip to main content
Log in

Effects of surfactant and oxidant on bioremediation of contaminated soil by total petroleum hydrocarbons using indigenous bacteria

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, solid-phase reactors on microcosm scale were performed to determine optimal conditions to remediate an aged petroleum hydrocarbons contaminated soil (9.1%) by biostimulation. Soil microcosms were incubated for 90 days, maintaining soil moisture at 30%. In the first step, effects of surfactant (Tween 80) and oxidant (H2O2) on the removal efficiency of total petroleum hydrocarbons (TPHs) were investigated without nutrients amendment of contaminated soil. After 90 days of treatment, results showed that Tween 80 did not improve significantly TPHs removal efficiency with only 38 ± 0.53% at tested concentration of 0.6 g/kg of dry soil, while 47.2 ± 3.6% were achieved by addition of 1.30 mol H2O2/kg of dry soil. Moreover, an increase in microbial population was recorded regardless of the concentrations of Tween 80 or H2O2 used despite the nutrient deficit with C/N/P molar ratio of 3017/5/1. In the second step, soil amendment by adjusting C/N/P molar ratio to 100/10/1 was tested alone and in the presence of optimal concentrations of Tween 80 and/or H2O2. Results show a significant enhancement in TPHs removal efficiency between 59.6 and 71.9%. The highest TPHs degradation was achieved in the case of nutrients, Tween 80 and H2O2 addition (100/10/1, 0.6 g Tween 80/kg of dry soil and 1.3 mol H2O2/kg of dry soil). The determination of aliphatic and polycyclic aromatic hydrocarbons levels showed a significant drop in aliphatic and aromatic fractions of 71 and 83%, respectively. Furthermore, the use of Tween 80 and H2O2 accelerated the biodegradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–703

    Article  Google Scholar 

  • Arrar J, Chekir N, Bentahar F (2007) Treatment of diesel fuel contaminated soil in jet–fluidized bed. Biochem Eng J 37:131–138

    Article  CAS  Google Scholar 

  • Atteia O, Estrada EDC, Bertin H (2013) Soil flushing: a review of the origin of efficiency variability. Rev Environ Sci Biotechnol 12:379–389

    Article  CAS  Google Scholar 

  • Baciocchi R, Boni MR, D’Aprile L (2004) Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils. J Hazard Mater 107:97–102

    Article  CAS  Google Scholar 

  • Bento FM, Camargo FA, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Biores Technol 96:1049–1055

    Article  CAS  Google Scholar 

  • Betancur-Corredor B, Pino NJ, Cardona S, Peñuela GA (2015) Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil. J Environ Sci 28:101–109

    Article  CAS  Google Scholar 

  • Calvo C, Rodríguez-Calvo A, Robledo-Mahón T, Manzanera M, González-López J, Aranda E, Silva-Castro G (2019) Biostimulation of crude oil-polluted soils: influence of initial physicochemical and biological characteristics of soil. Int J Environ Sci Technol 16:4925–4934

    Article  CAS  Google Scholar 

  • Chen K, Zhu Q, Qian Y, Song Y, Yao J, Choi MM (2013) Microcalorimetric investigation of the effect of non-ionic surfactant on biodegradation of pyrene by PAH-degrading bacteria Burkholderia cepacia. Ecotoxicol Environ Saf 98:361–367

    Article  CAS  Google Scholar 

  • Chen KF, Chang YC, Chiou WT (2016) Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: a comparison study. J Chem Technol Biotechnol 91:1877–1888

    Article  CAS  Google Scholar 

  • Chen F, Li X, Zhu Q, Ma J, Hou H, Zhang S (2019) Bioremediation of petroleum-contaminated soil enhanced by aged refuse. Chemosphere 222:98–105

    Article  CAS  Google Scholar 

  • de la Cueva SC, Rodríguez CH, Cruz NOS, Contreras JAR, Miranda JL (2016) Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water Air Soil Pollut 227:91

    Article  Google Scholar 

  • Derudi M, Venturini G, Lombardi G, Nano G, Rota R (2007) Biodegradation combined with ozone for the remediation of contaminated soils. Eur J Soil Biol 43:297–303

    Article  CAS  Google Scholar 

  • Di Toro S, Zanaroli G, Fava F (2006) Intensification of the aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs) through bioaugmentation with a non acclimated, complex source of microorganisms. Microb Cell Fact 5:1–10

    Google Scholar 

  • Doong RA, Lei WG (2003) Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J Hazard Mater 96:15–27

    Article  CAS  Google Scholar 

  • Ferguson SH, Woinarski AZ, Snape I, Morris CE, Revill AT (2004) A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil. Cold Reg Sci Technol 40:47–60

    Article  Google Scholar 

  • Ferrarese E, Andreottola G, Oprea IA (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater 152:128–139

    Article  CAS  Google Scholar 

  • Franzetti A, Di Gennaro P, Bevilacqua A, Papacchini M, Bestetti G (2006) Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere 62:1474–1480

    Article  CAS  Google Scholar 

  • Gentry T, Rensing C, Pepper I (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Ginn TR, Wood BD, Nelson KE, Scheibe TD, Murphy EM, Clement TP (2002) Processes in microbial transport in the natural subsurface. Adv Water Resour 25:1017–1042

    Article  CAS  Google Scholar 

  • Goi A, Trapido M (2004) Degradation of polycyclic aromatic hydrocarbons in soil: the Fenton reagent versus ozonation. Environ Technol 25:155–164

    Article  CAS  Google Scholar 

  • Gou Y, Ma J, Yang S, Song Y (2022) Insights into the effects of Fenton oxidation on PAH removal and indigenous bacteria in aged subsurface soil. Environ Pollut 298:118872

    Article  CAS  Google Scholar 

  • Hadibarata T, Kristanti RA (2014) Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022. Biodegradation 25:373–382

    Article  CAS  Google Scholar 

  • Haritash A, Kaushik C (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Huang KC, Zhao Z, Hoag GE, Dahmani A, Block PA (2005) Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61:551–560

    Article  CAS  Google Scholar 

  • Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R, Xue W (2017) Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci Total Environ 574:1599–1610

    Article  CAS  Google Scholar 

  • Hyde ST (2001) Identification of lyotropic liquid crystalline mesophases. Handbook Appl Surface Colloid Chem 2:299–332

    Google Scholar 

  • Jasmine J, Mukherji S (2015) Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia. J Environ Manage 149:118–125

    Article  CAS  Google Scholar 

  • Jia J, Wang B, Wu Y, Niu Z, Ma X, Yu Y, Hou P (2016) Environmental risk controllability and management of VOCs during remediation of contaminated sites. Soil Sediment Contamination Int J 25:13–25

    Article  Google Scholar 

  • Kanzari F, Syakti AD, Asia L, Malleret L, Mille G, Jamoussi B, Abderrabba M, Doumenq P (2012) Aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine, and organophosphorous pesticides in surface sediments from the Arc river and the Berre lagoon, France. Environ Sci Pollut Res 19:559–576

    Article  CAS  Google Scholar 

  • Kim I, Lee M (2012) Pilot scale feasibility study for in-situ chemical oxidation using H2O2 solution conjugated with biodegradation to remediate a diesel contaminated site. J Hazard Mater 241:173–181

    Article  Google Scholar 

  • Kulik N, Goi A, Trapido M, Tuhkanen T (2006) Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manage 78:382–391

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161

    Article  CAS  Google Scholar 

  • Lemaire J, Laurent F, Leyval C, Schwartz C, Buès M, Simonnot MO (2013) PAH oxidation in aged and spiked soils investigated by column experiments. Chemosphere 91:406–414

    Article  CAS  Google Scholar 

  • Liang X, Guo C, Liao C, Liu S, Wick LY, Peng D, Yi X, Lu G, Yin H, Lin Z (2017) Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs). Environ Pollut 225:129–140

    Article  CAS  Google Scholar 

  • Liao X, Wu Z, Li Y, Cao H, Su C (2019) Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs. Chemosphere 226:483–491

    Article  CAS  Google Scholar 

  • Lim MW, Von Lau E, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull 109:14–45

    Article  CAS  Google Scholar 

  • Lin TC, Pan PT, Cheng SS (2010) Ex situ bioremediation of oil-contaminated soil. J Hazard Mater 176:27–34

    Article  CAS  Google Scholar 

  • Liu PWG, Whang LM, Yang MC, Cheng SS (2008) Biodegradation of diesel-contaminated soil: A soil column study. J Chin Inst Chem Eng, 39:419–428

    Article  CAS  Google Scholar 

  • Lukić B, Panico A, Huguenot D, Fabbricino M, van Hullebusch ED, Esposito G (2017) A review on the efficiency of landfarming integrated with composting as a soil remediation treatment. Environ Technol Rev 6:94–116

    Article  Google Scholar 

  • Mathieu C, Pieltain F (2003) Analyses chimiques des sols (méthodes choisies). Ed. Tec&Doc, Lavoisier, 388.

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681

    Article  CAS  Google Scholar 

  • Mittal A, Singh P (2010) A feasibility study for assessment of in-situ bioremediation potential of a crude oil degrading Pseudomonas consortium. J Sci Res 2:127–137

    Article  CAS  Google Scholar 

  • Moliterni E, Rodriguez L, Fernández F, Villaseñor J (2012) Feasibility of different bioremediation strategies for treatment of clayey and silty soils recently polluted with diesel hydrocarbons. Water Air Soil Pollut 223:2473–2482

    Article  CAS  Google Scholar 

  • Nadarajah N, Van Hamme J, Pannu J, Singh A, Ward O (2002) Enhanced transformation of polycyclic aromatic hydrocarbons using a combined Fenton’s reagent, microbial treatment and surfactants. Appl Microbiol Biotechnol 59:540–544

    Article  CAS  Google Scholar 

  • Nam K, Rodriguez W, Kukor JJ (2001) Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45:11–20

    Article  CAS  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Kalogerakis N (2013) Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Mar Pollut Bull 72:165–173

    Article  CAS  Google Scholar 

  • Nwankwegu AS, Zhang L, Xie D, Onwosi CO, Muhammad WI, Odoh CK, Sam K, Idenyi JN (2022) Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. J Environ Manage 304:114313.

  • Okparanma RN, Azuazu I, Ayotamuno JM (2017) Assessment of the effectiveness of onsite ex situ remediation by enhanced natural attenuation in the Niger Delta region, Nigeria. J Environ Manage 204:291–299

    Article  CAS  Google Scholar 

  • Ouriache H, Arrar J, Namane A, Bentahar F (2019) Treatment of petroleum hydrocarbons contaminated soil by Fenton like oxidation. Chemosphere 232:377–386

    Article  CAS  Google Scholar 

  • Peluffo M, Rosso JA, Morelli IS, Mora VC (2018) Strategies for oxidation of PAHs in aged contaminated soil by batch reactors. Ecotoxicol Environ Saf 151:76–82

    Article  CAS  Google Scholar 

  • Rahman KS, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat I (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Biores Technol 90:159–168

    Article  CAS  Google Scholar 

  • Ranc B, Faure P, Croze V, Simonnot M (2016) Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 312:280–297

    Article  CAS  Google Scholar 

  • Ravikumar JX, Gurol MD (1994) Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand. Environ Sci Technol 28:394–400

    Article  CAS  Google Scholar 

  • Rivas FJ (2006) Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. J Hazard Mater 138:234–251

    Article  CAS  Google Scholar 

  • Saponaro S, Bonomo L, Petruzzelli G, Romele L, Barbafieri M (2002) Polycyclic aromatic hydrocarbons (PAHs) slurry phase bioremediation of a manufacturing gas plant (MGP) site aged soil. Water Air Soil Pollut 135:219–236

    Article  CAS  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195

    Article  CAS  Google Scholar 

  • Silva-Castro GA, Rodelas B, Perucha C, Laguna J, González-López J, Calvo C (2013) Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant. Sci Total Environ 445:347–355

    Article  Google Scholar 

  • Simonnot MO, Croze V (2012) Traitement des sols et nappes par oxydation chimique in situ.

  • Sutton NB, Grotenhuis JTC, Langenhoff AA, Rijnaarts HH (2011) Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies. J Soils Sediments 11:129–140

    Article  CAS  Google Scholar 

  • Svab M, Kubal M, Mullerova M, Raschman R (2009) Soil flushing by surfactant solution: pilot-scale demonstration of complete technology. J Hazard Mater 163:410–417

    Article  CAS  Google Scholar 

  • Szulc A, Ambrożewicz D, Sydow M, Ławniczak Ł, Piotrowska-Cyplik A, Marecik R, Chrzanowski Ł (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J Environ Manage 132:121–128

    Article  CAS  Google Scholar 

  • Usman M, Faure P, Hanna K, Abdelmoula M, Ruby C (2012) Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel 96:270–276

    Article  CAS  Google Scholar 

  • Valderrama C, Alessandri R, Aunola T, Cortina J, Gamisans X, Tuhkanen T (2009) Oxidation by Fenton’s reagent combined with biological treatment applied to a creosote-contaminated soil. J Hazard Mater 166:594–602

    Article  CAS  Google Scholar 

  • Varjani S, Upasani VN (2019) Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. J Environ Manage 245:358–366

    Article  CAS  Google Scholar 

  • Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  • Wang L, Li F, Zhan Y, Zhu L (2016) Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environ Sci Pollut Res 23:14451–14461

    Article  CAS  Google Scholar 

  • Xu Y, Lu M (2010) Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183:395–401

    Article  CAS  Google Scholar 

  • Xu J, Xin L, Huang T, Chang K (2011) Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation. J Environ Sci 23:1873–1879

    Article  CAS  Google Scholar 

  • Xu J, Deng X, Cui Y, Kong F (2016) Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil. J Hazard Mater 320:160–168

    Article  CAS  Google Scholar 

  • Yan G, Ma W, Chen C, Wang Q, Guo S, Ma J (2016) Combinations of surfactant flushing and bioremediation for removing fuel hydrocarbons from contaminated soils. CLEAN–Soil. Air, Water 44:984–991

    Article  CAS  Google Scholar 

  • Yang S, Li J, Song Y (2017) Application of surfactant Tween 80 to enhance Fenton oxidation of polycyclic aromatic hydrocarbons (PAHs) in soil pre-treated with Fenton reagents. Geol Ecol d Landsc 1:197–204

    Article  Google Scholar 

  • Yap CL, Gan S, Ng HK (2011) Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 83:1414–1430

    Article  CAS  Google Scholar 

  • Zhang D, Zhu L (2012) Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environ Pollut 164:169–174

    Article  CAS  Google Scholar 

  • Zhang T, Liu Y, Zhong S, Zhang L (2020) AOPs-based remediation of petroleum hydrocarbons-contaminated soils: efficiency, influencing factors and environmental impacts. Chemosphere 246:125726

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Namane.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: Samareh Mirkia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 67 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moumed, I., Arrar, J., Namane, A. et al. Effects of surfactant and oxidant on bioremediation of contaminated soil by total petroleum hydrocarbons using indigenous bacteria. Int. J. Environ. Sci. Technol. 20, 8863–8874 (2023). https://doi.org/10.1007/s13762-022-04600-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04600-2

Keywords

Navigation