Skip to main content

Advertisement

Log in

An insight into various biomarkers to study toxicological impact of nanoparticles in fishes: explored and missing information

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In recent years, the production and utilization of nanomaterials have increased many folds due to massive advancement in industrialization and urbanization as well as their increasing application in various sectors. Nanoparticles from these nanomaterials may release into the aquatic environment during their different stages of life cycles and may cause deleterious effects on aquatic fauna. The impact of the nanoparticles on the aquatic organisms is still largely unknown and less addressed. Although many studies have been performed to demonstrate toxicity caused by various types of nanoparticles to aquatic organisms, there is still less information related to suitable biomarkers or biological parameters used. Therefore, the aim of this review article is to carry out an assessment of available peer reviewed research reports in which different biological parameters were used to study effect of different nanoparticles on the aquatic organisms, especially fishes. Firstly, in this review the various sources of nanoparticles into the aquatic environment, different uptake routes of nanoparticles into the fish body, and their mechanism of action were discussed. After that, major emphasis as well as less emphasis given biological parameters or biomarkers to study nanoparticles toxicity to fishes by different researchers have been categorized and suitably illustrated. Furthermore, some new biomarkers or biological parameters which can be used to demonstrate nanoparticles toxicity were also discussed. In conclusion, this review will help the researchers to find out new biomarkers to study nanoparticles toxicity so that various biological mechanisms can be explored to assess the adverse effects of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdel-Khalek AA, Badran SR, Marie MAS (2020) The efficient role of rice husk in reducing the toxicity of iron and aluminum oxides nanoparticles in Oreochromis niloticus: hematological, bioaccumulation, and histological endpoints. Water Air Soil Pollut 231:53. https://doi.org/10.1007/s11270-020-4424-2

    Article  CAS  Google Scholar 

  • Abumourad IMK, Abbas WT, Authman MMN, Girgis SM (2014) Environmental impact of heavy metal pollution on metallothionein expression in Nile Tilapia. Res J Pharm Biol Chem Sci 5(2):998–1005

    Google Scholar 

  • Adhikari S, Sarkar B (2004) Effects of cypermethrin and carbofuran on certain Haematological parameters and prediction of their recovery in fresh water teleost, Labeo rohita. (Ham). Ecotoxicol Environ Saf 58:220–226

    Article  CAS  Google Scholar 

  • Ahmad F, Liu X, Zhou Y, Yao H (2015) An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebra fish (Danio rario). Aquat Toxicol 166:21–28. https://doi.org/10.1016/j.aquatox.2015.07.003

    Article  CAS  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Al-Bairutya GA, Shawa BJ, Handya RD, Henrya TB (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115. https://doi.org/10.1016/j.aquatox.2012.10.005

    Article  CAS  Google Scholar 

  • Alkaladi A, Afifi M, Ali H, Saddick S (2020) Hormonal and molecular alterations induced by sub-lethal toxicity of zinc oxide nanoparticles on Oreochromis niloticus. Saudi J Biol Sci 27(5):1296–1301. https://doi.org/10.1016/j.sjbs.2020.01.010

    Article  CAS  Google Scholar 

  • Amjad S, Sharma AK, Serajuddin M (2018) Toxicity assessment of cypermethrin nanoparticles in Channa punctatus: Behavioural response, micronuclei induction and enzyme alteration. Regul Toxicol Pharmacol 100:127–133. https://doi.org/10.1016/j.yrtph.2018.10.004

    Article  CAS  Google Scholar 

  • Asmonaite G, Boyer S, de Souza KB, Wassmur B, Sturve J (2016) Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquat Toxicol 173:143–153. https://doi.org/10.1016/j.aquatox.2016.01.013

    Article  CAS  Google Scholar 

  • Authman MM, Ibrahim SA, El-Kasheif MA, Gaber HS (2013) Heavy metals pollution and their effects on gills and liver of the Nile Catfish Clarias gariepinus inhabiting El-Rahawy Drain. Egypt Glob Vet 10(2):103–115

    CAS  Google Scholar 

  • Bacchetta C, Ale A, Simoniello MF, Gervasio S, Davico C, Rossi AS, Desimone MF, Gisela Poletta G, López G, Monserrat JM, Cazenave J (2017) Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Indic 76:230–239

    Article  CAS  Google Scholar 

  • Batley G, McLaughlin MJ (2010) Fate of manufactured nanomaterials in the Australian environment. CSIRO Land and Water, New Jersey

    Google Scholar 

  • Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96(2):159–165. https://doi.org/10.1016/j.aquatox.2009.10.019

    Article  CAS  Google Scholar 

  • Bisiaux MM, Edwards R, Heyvaert AC, Thomas JM, Fitzgerald B, Susfalk RB, Schladow SG, Thaw M (2011) Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe. Environ Sci Technol 45:2065

    Article  CAS  Google Scholar 

  • Blum JL, Xiong JQ, Hoffman C, Zelikoff JT (2012) Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci 126(2):478–486

    Article  CAS  Google Scholar 

  • Bolognesi C, Cirillo S (2014) Genotoxicity biomarkers in aquatic bioindicators. Curr Zool 60(2):273–284

    Article  CAS  Google Scholar 

  • Bolognesi C, Hayashi M (2011) Micronucleus assay in aquatic animals. Mutagenesis 26(1):205–213

    Article  CAS  Google Scholar 

  • Botta C, Labille J, Auffan M, Borschneck D, Miche H, Cabié M, Masion A, Rose J, Bottero JY (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: Structures and quantities. Environ Pollut 159:1543

    Article  CAS  Google Scholar 

  • Boyle D, Al-Bairutya GA, Ramsden CS, Sloman KA, Henry TB, Handy RD (2013) Subtle alterations in swimming speed distributions of rainbow trout exposed to titanium dioxide nanoparticles are associated with gill rather than brain injury. Aquat Toxicol 126:116–127. https://doi.org/10.1016/j.aquatox.2012.10.006

    Article  CAS  Google Scholar 

  • Brody AL (2006) Nano and food packaging technologies converge. Food Technol 60(3):92–94

    Google Scholar 

  • Burger J, Gaines KF, Boring CS, Stephens WL, Snodgrass J, Dixon C, Mcmahon M, Shukla S, Shukla T, Gochfeld M (2002) Metal levels in fish from the Savannah river: potential hazards to fish and other receptors. Environ Res 89(1):85–97

    Article  CAS  Google Scholar 

  • Chen C, Huang W (2017) Aggregation kinetics of diesel soot nanoparticles in wet environments. Environ Sci Technol 51(4):2077–2086

    Article  CAS  Google Scholar 

  • Chen H, Chu PK, He J, Hu T, Yang M (2011a) Porous magnetic manganese oxide nanostructures: Synthesis and their application in water treatment. J Colloid Interface Sci 359:68

    Article  CAS  Google Scholar 

  • Chen TH, Lin CY, Tseng MC (2011b) Behavioural effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Mar Pollut Bull 63:303–308. https://doi.org/10.1016/j.marpolbul.2011.04.017

    Article  CAS  Google Scholar 

  • Chen TH, Lina CC, Menget PJ (2014) Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). J Hazard Mater 277:134–140. https://doi.org/10.1016/j.jhazmat.2013.12.030

    Article  CAS  Google Scholar 

  • Choi JS, Kim RO, Yoon S, Kim WK (2016) Developmental toxicity of zinc oxide nanoparticles to zebrafish (Danio Rerio): a transcriptomic analysis. PLoS ONE 11(8):e0160763. https://doi.org/10.1371/journal.pone.0160763

    Article  CAS  Google Scholar 

  • Craig PM, Wood CM, McClelland GB (2007) Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 293(5):R1882–R1892

    Article  CAS  Google Scholar 

  • Cui B, Ren L, Xu QH, Yin LY, Zhou XY, Liu JX (2016) Silver nanoparticles inhibited erythrogenesis during zebrafish embryogenesis. Aqua Toxicol 177:295–305. https://doi.org/10.1016/j.aquatox.2016.06.005

    Article  CAS  Google Scholar 

  • Czedli H, Csedreki L, Sziki AG, Jolankai G, Pataki B, Hancz C, Antal L, Nagy SA (2014) Investigation of the bioaccumulation of copper in fish. Fresenius Environ Bull 23(7):1547–1552

    CAS  Google Scholar 

  • Della Torre C, Petochi T, Corsi I, Dinardo MM, Baroni D, Alcaro L, Focardi S, Tursi A, Marino G, Frigeric A, Amato E (2010) DNA damage, severe organ lesions and high muscle levels of As and Hg in two benthic fish species from a chemical warfare agent dumping site in the Mediterranean Sea. Sci Total Environ 408(9):2136–2145

    Article  CAS  Google Scholar 

  • Dhanakumar S, Solaraj G, Mohanra R (2015) Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicol Environ Saf 113:145–151

    Article  CAS  Google Scholar 

  • Duan J, Yu Y, Shi H, Tian L, Guo C, Huang P, Zhou X, Peng S, Sun Z (2013) Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae. PLoS ONE 8(9):e74606. https://doi.org/10.1371/journal.pone.0074606

    Article  CAS  Google Scholar 

  • Eagles-Smith CA, Ackerman JT (2014) Mercury bioaccumulation in estuarine wetland fishes: Evaluating habitats and risk to coastal wildlife. Environ Pollut 193:147–155

    Article  CAS  Google Scholar 

  • Exbrayat JM, Moudilou EN, Lapied E (2015) Harmful effects of nanoparticles on animals. J Nanotechnol 2015:10

    Article  Google Scholar 

  • Falfushynska H, Sokolova I, Stoika R (2022) Uptake, biodistribution, and mechanisms of toxicity of metal-containing nanoparticles in aquatic invertebrates and vertebrates. In: Stoika RS (ed) Biomedical nanomaterials. Springer, Cham, pp 227–263

    Chapter  Google Scholar 

  • Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barceló D (2010) First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383(1–2):44–51. https://doi.org/10.1016/j.jhydrol.2009.08.016

    Article  CAS  Google Scholar 

  • Fernandes C, Fontaínhas-Fernandes A, Monteiro SM, Salgado MA (2007) Histopathological gill changes in wild leaping grey mullet (Liza saliens) from the Esmoriz Paramos coastal lagoon. Portugal Environ Toxicol 22(4):443–448

    Article  CAS  Google Scholar 

  • Fırat O, Bozat RC (2019) Assessment of biochemical and toxic responses induced by titanium dioxide nanoparticles in Nile tilapia Oreochromis niloticus. Hum Ecol Risk Assess 25(6):1438–1447. https://doi.org/10.1080/10807039.2018.1465338

    Article  CAS  Google Scholar 

  • Freitas RA (2005) What is nanomedicine? Nanomedicine 1:2–9

    Article  CAS  Google Scholar 

  • Gaber HS, Abbas WT, Authman MM, Gaber SA (2014) Histological and biochemical studies on some organs of two fish species in Bardawil Lagoon, North Sinai. Egypt Glob Vet 12(1):1–11

    Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, Biswas A, Britton GJ, Cole PA, Johnston BD, Ju-Nam Y, Rosenkranz P, Scown TM, Stone V (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31:144

    Article  CAS  Google Scholar 

  • George S, Gardner H, Seng EK, Chang H, Wang C, Yu Fang CH, Richards M, Valiyaveettil S, Chan WK (2014) Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos. Environ Sci Technol 48:6374–6382. https://doi.org/10.1021/es405768n

    Article  CAS  Google Scholar 

  • Gerhardt A (2007) Aquatic behavioural ecotoxicology-prospects and limitations. Hum Ecol Risk Assess 13:481–491

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404

    Article  CAS  Google Scholar 

  • Gupta YR, Sellegounder D, Kannan M, Deepa S, Senthilkumaran B, Basavaraju Y (2016) Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio): Biochemical, histological and proteomic approaches. Aquac Fish 1:15–23. https://doi.org/10.1016/j.aaf.2016.09.003

    Article  Google Scholar 

  • Hafiz SM, Kulkarni SS, Thakur MK (2018) In-vivo Toxicity Assessment of Biologically Synthesized Iron Oxide Nanoparticles in Zebrafish (Danio rerio). Biosci Biotechnol Res Asia 15(2):419–425

    Article  Google Scholar 

  • Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008a) Manufactured nanoparticles: Their uptake and effects on fish a mechanistic analysis. Ecotoxicology 17:396

    Article  CAS  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008b) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325

    Article  CAS  Google Scholar 

  • Harris S, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  CAS  Google Scholar 

  • Hermoso V, Clavero M, Blancogarrido F, Prenda J (2010) Assessing the ecological status in species-poor systems: A fish-based index for Mediterranean Rivers (Guadiana River, SW Spain). Ecol Indic 10(6):1152–1161

    Article  Google Scholar 

  • Hondroulis E, Nelson J, Li CZ (2014) Biomarker analysis for nanotoxicology. Biomarkers in toxicology. Academic Press, New York, pp 689–695

    Chapter  Google Scholar 

  • Huang CB, Wang B, Ren D, Jin W, Liu J, Peng J, Pan X (2013) Occurrence, removal and bioaccumulation of steroid estrogens in Dianchi Lake catchment. Environ Int 59:262–327

    Article  CAS  Google Scholar 

  • Ibrahim ATA (2020) Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: hematological and biochemical response. J Trace Elem Med Biol 61:126507. https://doi.org/10.1016/j.jtemb.2020.126507

    Article  CAS  Google Scholar 

  • Imani M, Halimi M, Khara H (2015) Effects of silver nanoparticles (AgNP) on haematological parameters of rainbow trout. Oncorhynchus Mykiss Comp Clin Path 24(3):491–495. https://doi.org/10.1007/s00580-014-1927-5

    Article  CAS  Google Scholar 

  • Johari SA, Kalbassi MR, Yu IJ, Lee JH (2015) Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comp Clin Path 24:995–1007. https://doi.org/10.1007/s00580-014-2019-2

    Article  CAS  Google Scholar 

  • Jpw SR, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson D, Ng AK, Aboueissa AM, Mitani H, Spalding MJ, Mason MD (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(34):41. https://doi.org/10.1016/j.aquatox.2009.11.016

    Article  CAS  Google Scholar 

  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233

    Article  CAS  Google Scholar 

  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900

    Article  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot waste- water treatment plant. Environ Sci Technol 45(9):3902–3908

    Article  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47(12):3866–3877

    Article  CAS  Google Scholar 

  • Karnik BS, Davies SH, Baumann MJ, Masten SJ (2005) Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environ Sci Technol 39:7656–7661

    Article  CAS  Google Scholar 

  • Khan MS, Qureshi NA, Jabeen F (2017) Assessment of toxicity in fresh water fish Labeo rohita treated with silver nanoparticles. Appl Nanosci 7:167–179. https://doi.org/10.1007/s13204-017-0559x

    Article  CAS  Google Scholar 

  • Khan MS, Qureshi NA, Jabeen F, Shakeel M, Asghar MS (2018) Assessment of Waterborne Amine-Coated Silver Nanoparticle (Ag-NP)-Induced Toxicity in Labeo rohita by Histological and Hematological Profiles. Biol Trace Elem Res 182(1):130–139. https://doi.org/10.1007/s12011-017-1080-5

    Article  CAS  Google Scholar 

  • Kim S, Ryu DY (2013) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33(2):78–89

    Article  Google Scholar 

  • Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509

    Article  CAS  Google Scholar 

  • Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757

    Article  CAS  Google Scholar 

  • Kumar N, Krishnani KK, Singh NP (2018) Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res 25:8914–8927. https://doi.org/10.1007/s11356-017-1165-x

    Article  CAS  Google Scholar 

  • Kumar N, Chandan NK, Wakchaure GC, Singh NP (2020) Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comp Biochem Physiol Part c: Toxicol Pharmacol 229:108678. https://doi.org/10.1016/j.cbpc.2019.108678

    Article  CAS  Google Scholar 

  • Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Curr Mol Med 6:651–663

    Article  CAS  Google Scholar 

  • Li X, Ji X, Wang R, Zhao J, Dang J, Gao Y, Jin M (2020) Zebrafish behavioral phenomics employed for characterizing behavioral neurotoxicity caused by silica nanoparticles. Chemosphere 240:124937. https://doi.org/10.1016/j.chemosphere.2019.124937

    Article  CAS  Google Scholar 

  • Maheswaran R, Devapaul A, Muralidharan S, Velmurugan B, Ignacimuthu S (2008) Haematological studies of freshwater fish, Clarias batrachus (L) exposed to mercuric chloride. Int J Integr Biol 2(1):49–54

    CAS  Google Scholar 

  • Mattsson K, Johnson EV, Malmendal A, Linse S, Hansson LA, Cedervall T (2017) Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep 7:11452. https://doi.org/10.1038/s41598-017-10813-0

    Article  CAS  Google Scholar 

  • Munir T, Latif M, Mahmood A, Malik A, Shafiq F (2020) Influence of IP-injected ZnO-nanoparticles in Catla catla fish: hematological and serological profile. Naunyn-Schmiedeb Arch Pharmacol 353:2453–2461. https://doi.org/10.1007/s00210-020-01955-6

    Article  CAS  Google Scholar 

  • Murali M, Suganthi P, Athif P, Bukhari AS, Syed Mohamed HE, Basu H, Singhal RK (2017) Histological alterations in the hepatic tissues of Al2O3 nanoparticles exposed freshwater fish Oreochromis mossambicus. J Trace Elem Med Biol 44:125–131. https://doi.org/10.1016/j.jtemb.2017.07.001

    Article  CAS  Google Scholar 

  • Murthy KS, Kiran BR, Venkateshwarlu M (2013) A review on toxicity of pesticides in Fish. Int J Open Sci Res 1(1):15–36

    Google Scholar 

  • National Science and Technology Council (2004) National Nanotechnology Initiative Strategic Plan; Executive Office of the President of the United States: Washington, DC, USA

  • Priya KK, Ramesh M, Saravanan M, Ponpandian N (2015) Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita: Hematology, ionoregulation and gill Naþ/Kþ ATPase activity. Ecotoxicol Environ Saf 120:295–302. https://doi.org/10.1016/j.ecoenv.2015.05.032

    Article  CAS  Google Scholar 

  • Purushothaman S, Raghunath A, Dhakshinamoorthy V, Panneerselvam L, Perumal E (2014) Acute exposure to titanium dioxide (TiO2) induces oxidative stress in zebrafish gill tissues. Toxicol Environ Chem 96(6):890–905. https://doi.org/10.1080/02772248.2014.987511

    Article  CAS  Google Scholar 

  • Qualhato TLG Rocha E Celma de Oliveira Lima DM e Silva JR Cardoso CK Grisolia SMT de Sabóia-Morais 2017 Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata Chemosphere 183 305 314 https://doi.org/10.1016/j.chemosphere.2017.05.061

  • Rajkumar KS, Kanipandian N, Thirumurugan R (2016) Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci 6:19–29. https://doi.org/10.1007/s13204-015-0417-7

    Article  CAS  Google Scholar 

  • Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951. https://doi.org/10.1007/s10646-009-0357-7

    Article  CAS  Google Scholar 

  • Ramsden CS, Henry TB, Handy RD (2013) Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat Toxicol 126:404–413. https://doi.org/10.1016/j.aquatox.2012.08.021

    Article  CAS  Google Scholar 

  • Rana S, Kumar A (2022) Toxicity of nanoparticles to algae-bacterial co-culture: Knowns and unknowns. Algal Res 62:102641

    Article  Google Scholar 

  • Remya AS, Ramesh M, Saravanan M, Poopal RK, Bharathi S, Nataraj D (2015) Iron oxide nanoparticles to an Indian major carp, Labeo rohita: Impacts on hematology, iono regulation and gill Na+ /K+ ATPase activity. J King Saud Univ Sci 27(2):151–160

    Article  Google Scholar 

  • Rocco L, Santonastaso M, Mottola F, Costagliola D, Suero T, Pacifico S, Stingo V (2015) Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicol Environ Saf 113:223–230. https://doi.org/10.1016/j.ecoenv.2014.12.012

    Article  CAS  Google Scholar 

  • Roco MC (2003) Nanotechnology convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  CAS  Google Scholar 

  • Rowan DJ (2013) Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic food webs near nuclear facilities. J Environ Radioac 121:2–11

    Article  CAS  Google Scholar 

  • Saravanan M, Suganya Ramesh M, Poopal RK, Gopalan N, Ponpandian N (2015) Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeo rohita. J Nanoparticle Res 17:274. https://doi.org/10.1007/s11051-015-3082-6

    Article  CAS  Google Scholar 

  • Schlich K, Klawonn T, Terytze K, Hund-Rinke K (2013) Hazard assessment of a silver nanoparticle in soil applied via sewage sludge. Environ Sci Eur 25(1):17

    Article  Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. https://doi.org/10.1016/j.aquatox.2004.03.016

    Article  CAS  Google Scholar 

  • Shaw BJ, Al-Bairuty G, Handy RD (2012) Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): Physiology and accumulation. Aquat Toxicol 116–117:90–101. https://doi.org/10.1016/j.aquatox.2012.02.032

    Article  CAS  Google Scholar 

  • Sheeba AS, Noorjahan CM (2018) Toxicity of copper nanoparticle on haematology and biochemistry of fish. Tilapia Mossambica Int Res J Pharm 9(10):121–124

    Google Scholar 

  • Song Y, Salbu B, S Heier L, Teien HC, Lind OC, Oughton D, Peterson K, Rosseland BO, Skipperud L, Tollefsen KE (2012) Early stress responses in Atlantic salmon (Salmo salar) exposed to environmentally relevant concentrations of uranium. Aquat Toxicol, 112(113): 62–71

  • Sounderajan S Kumar GK Udas AC (2010) Cloud point extraction and electrothermal atomic absorption spectrometry of Se (IV)—3,3′- Diaminobenzidine for the estimation of trace amounts of Se (IV) and Se (VI) in environmental water samples and total selenium in animal blood and fish tissue samples. J Hazard Mater 175(1–3): 666 672

  • Souza C, Duarte D, Pimente NQ, Rocha LD, Morozesk M, Bonomo MM, Azevedo VC, Pereira CDS, Monferran MV, Milanez CRD, Matsumoto ST, Wunderlin DA, Fernandes MN (2013) Matching metal pollution with bioavailability, bioaccumulation and biomarkers response in fish (Centropomus parallelus) resident in neotropical estuaries. Environ Pollut 180:136–144

    Article  CAS  Google Scholar 

  • Sovová T, Boyle D, Sloman KA, Pérez CV, Handy RD (2014) Impaired behavioural response to alarm substance in rainbow trout exposed to copper nanoparticles. Aquat Toxicol 152:195–204. https://doi.org/10.1016/j.aquatox.2014.04.003

    Article  CAS  Google Scholar 

  • Suganya M, Gnanamangai BM, Govindasamy C, Elsadek MF, Pugazhendhi A, Chinnadurai V, Selvaraj A, Ravindran B, Chang SW, Ponmurugan P (2019) Mitochondrial dysfunction mediated apoptosis of HT-29 cells through CS-PAC-AgNPs and investigation of genotoxic effects in zebra (Danio rerio) fish model for drug delivery. Saudi J Biol Sci 26:767–776

    Article  CAS  Google Scholar 

  • Sun J, Zhang Q, Wang Z, Yan B (2013) Effects of nanotoxicity on female reproductivity and fetal development in animal models. Int J Mol Sci 14(5):9319–9337

    Article  Google Scholar 

  • Thummabancha K, Onparn K, Srisapoome P (2016) Analysis of hematologic alterations, immune responses and metallothionein gene expression in Nile tilapia (Oreochromis niloticus) exposed to silver nanoparticles. J Immunotoxicol 13(6):909–917. https://doi.org/10.1080/1547691X.2016.1242673

    Article  CAS  Google Scholar 

  • Vali S, Mohammadi G, Tavabe KR, Moghadas F, Naserabad SS (2020) The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, haematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicol Environ Saf 194:110353. https://doi.org/10.1016/j.ecoenv.2020.110353

    Article  CAS  Google Scholar 

  • Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420. https://doi.org/10.1007/s10646-008-0226-9

    Article  CAS  Google Scholar 

  • Wang C, Shang C, Westerhoff P (2010a) Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV-vis spectroscopic and mass spectrometric detection. Chemosphere 80:334

    Article  Google Scholar 

  • Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010b) Amino functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349(1):293–299. https://doi.org/10.1016/j.jcis.2010.05.010

    Article  CAS  Google Scholar 

  • Wang J, Zhu X, Zhang X, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen Y (2011) Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere 83(4):461–467

    Article  CAS  Google Scholar 

  • Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticles in natural waters. Trac-Trend Anal Chem 30:72

    Article  CAS  Google Scholar 

  • Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials. J Environ Monit 13:1195

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q, Li H, Li W, Wang T, Jiang G (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100:160–167. https://doi.org/10.1016/j.aquatox.2009.11.014

    Article  CAS  Google Scholar 

  • Xu J, Zhang Q, Li X, Zhan S, Wang L, Chen D (2017) The effects of copper oxide nanoparticles on dorsoventral patterning, convergent extension, and neural and cardiac development of zebrafish. Aquat Toxicol 188:130–137. https://doi.org/10.1016/j.aquatox.2017.05.002

    Article  CAS  Google Scholar 

  • Yan J, Lin B, Hu C, Zhang H, Lin Z, Xi Z (2014) The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos. Nanoscale Res Lett 9:406. https://doi.org/10.1186/1556-276X-9-406

    Article  CAS  Google Scholar 

  • Zala SM, Penn DJ (2004) Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges. Anim Behav 68:649–664

    Article  Google Scholar 

  • Zhao JL, Liu YS, Liu WR, Jianx YuX, Su HC, Zhang QQ, Chen XW, Yang YY, Chen J, Liu SS, Pan CG, Huang GY, Ying GG (2015) Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region. Environmen Pollut 198:15–24

    Article  Google Scholar 

  • Zhao X, Ren X, Zhu R, Luo Z, Ren B (2016) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat Toxicol 180:56–70. https://doi.org/10.1016/j.aquatox.2016.09.013

    Article  CAS  Google Scholar 

  • Zutshi BSG, Prasad R, Nagaraja R (2010) Alteration in hematology of Labeo rohita under stress of pollution from Lakes of Bangalore, Karnataka. India Environ Monit Assess 168(1–4):11–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by University Grant Commission (UGC), by the grant of STARTUP (No. F.30-409/ 2018(BSR)), UGC, Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

A.R Samim has made the idea, reviewed the literature, drafted the original manuscript, prepared figures and tables and analyzed the manuscript. Md. Arshad has analyzed and edited the manuscript. H. Vaseem has originated the idea, analyzed, edited and revised the manuscript and supervised.

Corresponding author

Correspondence to H. Vaseem.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: Maryam Shabani.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samim, A.R., Arshad, M. & Vaseem, H. An insight into various biomarkers to study toxicological impact of nanoparticles in fishes: explored and missing information. Int. J. Environ. Sci. Technol. 20, 10533–10552 (2023). https://doi.org/10.1007/s13762-022-04488-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04488-y

Keywords

Navigation