Skip to main content

Advertisement

Log in

Bipolar membrane electrodialysis for mixed salt water treatment: determination of optimum conditions by topsis-based taguchi method

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The distillation waste (DW) is the biggest handicap of soda ash production with the Solvay process. The DW mainly consists of CaCl2 and NaCl, and especially the recent studies clearly show the damage it causes to the environment. With the aim to develop an alternative to the distillation unit in Solvay process, an experimental work was performed to investigate the effect of the working parameters on the different performance criteria for the production of NaOH+NH3.H2O mixture and HCI from simulated salt mixture of NaCI and NH4CI by bipolar membrane electrodialysis, and on the determination of the optimum working conditions. The performance criteria were taken as the acid and base concentrations, product-based salt conversion, product-based flux, energy consumption in the electrodialysis cell, desalination, and impurities in the products. The working parameters were chosen as the initial salt concentration, initial acid and base concentrations, initial acid and base volumes, current density, amount of impurity in product, and anolyte and catholyte concentrations. The experimental design and the search for the optimum working conditions for the performance criteria were performed by the Taguchi-based-multi-criteria decision-making method. Under optimum conditions, the products of 4.04 M HCl with 93.5% purity and 3.66 M NaOH + NH3.H2O with 98.7% purity (on dry basis), and 99.8% desalination were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdullahi SR, Öner MR, Ata ON (2019) Fractional factorial design application for the determination of affecting parameters on the generation of KOH and HCl from simulated wastewater solution by bipolar membrane electrodialysis abstract. Avrupa Bilim ve Teknoloji Dergisi. https://doi.org/10.31590/ejosat.646850

    Article  Google Scholar 

  • Amokrane A, Comel C, Veron J (1997) Landfill leachates pretreatment by coagulation-flocculation. Water Res 31:2775–2782

    Article  CAS  Google Scholar 

  • Ata ON, Kanca A, Demir Z, Yigit V (2017) Optimization of ammonia removal from aqueous solution by microwave-assisted air stripping. Water Air Soil Pollut 228:448

    Article  Google Scholar 

  • Balster J, Sumbharaju R, Srikantharajah S, Pünt I, Stamatialis D, Jordan V, Wessling M (2007) Asymmetric bipolar membrane: a tool to improve product purity. J Membr Sci 287:246–256

    Article  CAS  Google Scholar 

  • Białowicz K, Kiełkowska U (2014) Precipitation of calcium carbonate in the presence of urea at 293 K and 343 K. Polish J Chem Tech 16(2):95–98

    Article  Google Scholar 

  • Bykovsky NA, Rahman PA, Puchkova LN, Fanakova NN (2017) Electrochemical recycling of still waste liquid in ammonia soda production. Key Eng Mater 743:342–346

    Article  Google Scholar 

  • Çalban T, Kavci E (2010) Removal of calcium from soda liquid waste containing calcium chloride. Energy Sour, Part A: Recov, Utiliz Environ Effect 32:407–418

    Article  Google Scholar 

  • Czaplicka N, Konopacka-Łyskawa DJSAS (2019) Studies on the utilization of post-distillation liquid from Solvay process to carbon dioxide capture and storage. SN Appl Sci 1(5):1–8

    Article  CAS  Google Scholar 

  • Dursun L, Ata ON, Kanca A (2021) Bipolar membrane electrodialysis for binary salt water treatment: valorization of type and concentration of electrolytes. Ind Eng Chem Res 60:2003–2010

    Article  CAS  Google Scholar 

  • Erbil Ö (2004) Endüstriyel Anorganik Kimya, İzmir

  • Erkmen J, Yapici S (2016) A environmentally friendly process for boric acid and sodium hydroxide production from borax; bipolar membrane electrodialysis. Desalin Water Treat 57:20261–20269

    Article  CAS  Google Scholar 

  • Erkmen J, Yapici S, Arzutuğ M, Aydin Ö, Ata O, Öner M (2016) Hydrofluoric acid and sodium hydroxide production by bipolar membrane electrodialysis. Desalin Water Treat 57:20254–20260

    Article  CAS  Google Scholar 

  • Fernandez-Gonzalez C, Dominguez-Ramos A, Ibañez R, Irabien A (2016) Electrodialysis with bipolar membranes for valorization of brines. Sep Purif Rev 45:275–287

    Article  CAS  Google Scholar 

  • Forster M (2012) Investigations for the environmentally friendly production of Na2CO3 and HCl from exhaust CO2, NaCl and H2O. J Clean Prod 23:195–208

    Article  CAS  Google Scholar 

  • Fu L, Gao X, Yang Y, Aiyong F, Hao H, Gao C (2014) Preparation of succinic acid using bipolar membrane electrodialysis. Sep Purif Technol 127:212–218

    Article  CAS  Google Scholar 

  • Ghyselbrecht K, Huygebaert M, van der Bruggen B, Ballet R, Meesschaert B, Pinoy L (2013) Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis. Desalination 318:9–18

    Article  CAS  Google Scholar 

  • Ghyselbrecht K, Silva A, van der Bruggen B, Boussu K, Meesschaert B, Pinoy L (2014) Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. J Environ Manage 140:69–75

    Article  CAS  Google Scholar 

  • Ibáñez R, Pérez-González A, Gómez P, Urtiaga A, Ortiz I (2013) Acid and base recovery from softened reverse osmosis (RO) brines. Exp Assess Model Concent Desalin 309:165–170

    Google Scholar 

  • Jadeja R, Tewari A (2009) Effect of soda ash industry effluent on agarophytes, alginophytes and carrageenophyte of west coast of India. J Hazard Mater 162:498–502

    Article  CAS  Google Scholar 

  • Jiang C, Wang Q, Li Y, Wang Y, Xu T (2015) Water electro-transport with hydrated cations in electrodialysis. Desalin 365:204–212

    Article  CAS  Google Scholar 

  • Kasikowski T, Buczkowski R, Dejewska B, Peszyńska-Białczyk K, Lemanowska E, Igliński B (2004a) Utilization of distiller waste from ammonia-soda processing. J Clean Prod 12:759–769

    Article  Google Scholar 

  • Kasikowski T, Buczkowski R, Lemanowska E (2004b) Cleaner production in the ammonia–soda industry: an ecological and economic study. J Environ Manage 73:339–356

    Article  CAS  Google Scholar 

  • Kasikowski T, Buczkowski R, Cichosz M (2008) Utilisation of synthetic soda-ash industry by-products. Int J Prod Econ 112:971–984

    Article  Google Scholar 

  • Koter S, Warszawski A (2000) Electromembrane processes in environment protection. Pol J Environ Stud 9:45–56

    CAS  Google Scholar 

  • Lameloise M-L, Matinier H, Fargues C (2009) Concentration and purification of malate ion from a beverage industry waste water using electrodialysis with homopolar membranes. J Membr Sci 343:73–81

    Article  CAS  Google Scholar 

  • Li Y, Song X, Chen G, Sun Z, Xu Y, Yu J (2015) Preparation of calcium carbonate and hydrogen chloride from distiller waste based on reactive extraction–crystallization process. Chem Eng J 278:55–61

    Article  CAS  Google Scholar 

  • Li Y, Shi S, Cao H, Wu X, Zhao Z, Wang L (2016) Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Water Res 89:201–209

    Article  CAS  Google Scholar 

  • Lin Teng Shee F, Angers P, Bazinet L (2007) Delipidation of a whey protein concentrate by electroacidification with bipolar membranes. J Agric Food Chem 55:3985–3989

    Article  Google Scholar 

  • Lv Y, Yan H, Yang B, Wu C, Zhang X, Wang X (2018) Bipolar membrane electrodialysis for the recycling of ammonium chloride wastewater: Membrane selection and process optimization. Chem Eng Res Des 138:105–115

    Article  CAS  Google Scholar 

  • Mikhailova E, Panasenko V, Markova N (2016) Calcium carbonate synthesis with prescribed properties based on liquid waste of soda production. Odes’kyi Politechnichnyi Universytet Pratsi, https://doi.org/10.15276/opu.2.49.2016.18

  • Molnár E, Nemestóthy N, Bélafi-Bakó K (2010) Utilisation of bipolar electrodialysis for recovery of galacturonic acid. Desalination 250:1128–1131

    Article  Google Scholar 

  • Noble RD, Stern SA (1995) Membrane separations technology: principles and applications. Elsevier, Armsterdam

    Google Scholar 

  • Öner MR, Kanca A, Ata ON, Yapici S, Yaylali NA (2021) Bipolar Membrane Electrodialysis for Mixed Salt Water Treatment: Evaluation of parameters on process performance. J Environ Chem Eng 9(4):105750

    Article  Google Scholar 

  • Özdağoğlu A (2013) Farklı normalizasyon yöntemlerinin TOPSIS’te karar verme sürecine etkisi. Ege Akademik Bakış 13:245–257

    Google Scholar 

  • Özdağoğlu A (2014) Normalizasyon Yöntemlerinin Çok Ölçütlü Karar Verme Sürecine Etkisi–Moora Yöntemi İncelemesi. Ege Academic Review, 14

  • Rottiers T, Ghyselbrecht K, Meesschaert B, van der Bruggen B, Pinoy L (2014) Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions. Chem Eng Sci 113:95–100

    Article  CAS  Google Scholar 

  • Sadrzadeh M, Mohammadi T (2009) Treatment of sea water using electrodialysis: current efficiency evaluation. Desalination 249:279–285

    Article  CAS  Google Scholar 

  • Shi S, Lee Y-H, Yun S-H, Hung PVX, Moon S-H (2010) Comparisons of fish meat extract desalination by electrodialysis using different configurations of membrane stack. J Food Eng 101:417–423

    Article  Google Scholar 

  • Steinhauser G (2008) Cleaner production in the Solvay process: general strategies and recent developments. J Clean Prod 16:833–841

    Article  Google Scholar 

  • Summaries MC (2021) Mineral commodity summaries. Report. Reston, VA, 200

  • Sun B-C, Wang X-M, Chen J-M, Chu G-W, Chen J-F, Shao L (2011) Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed. Chem Eng J 168:731–736

    Article  CAS  Google Scholar 

  • Sun X, Lu H, Wang J (2017) Recovery of citric acid from fermented liquid by bipolar membrane electrodialysis. J Clean Prod 143:250–256

    Article  CAS  Google Scholar 

  • Tanaka Y (2004) Overall mass transport and solution leakage in an ion-exchange membrane electrodialyzer. J Membr Sci 235:15–24

    Article  CAS  Google Scholar 

  • ter Heijne A, Hamelers HV, de Wilde V, Rozendal RA, Buisman CJ (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205

    Article  Google Scholar 

  • Tongwen X (2002) Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review. Resour Conserv Recycl 37:1–22

    Article  Google Scholar 

  • Trypuć M, Białowicz K (2011) CaCO3 production using liquid waste from Solvay method. J Clean Product 19:751–756

    Article  Google Scholar 

  • Wang Y, Zhang X, Xu T (2010) Integration of conventional electrodialysis and electrodialysis with bipolar membranes for production of organic acids. J Membr Sci 365:294–301

    Article  CAS  Google Scholar 

  • Wang X-B, Xiang Y, Li X-Y (2020) Environmental risk for application of ammonia-soda white mud in soils in China. J Integr Agric 19:601–611

    Article  CAS  Google Scholar 

  • Wu Y, Xie H, Liu T, Wang Y, Wang F, Gao X, Liang B (2019) Soda ash production with low energy consumption using proton cycled membrane electrolysis. Ind Eng Chem Res 58:3450–3458

    Article  CAS  Google Scholar 

  • Xu T, Huang C (2008) Electrodialysis-based separation technologies: a critical review. AIChE J 54:3147–3159

    Article  CAS  Google Scholar 

  • Zardari NH, Ahmed K, Shirazi SM, Yusop ZB (2015) Weighting methods and their effects on multi-criteria decision making model outcomes in water resources management. Springer, Berlin

    Book  Google Scholar 

  • Zhang Y, van der Bruggen B, Pinoy L, Meesschaert B (2009) Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis. J Membr Sci 332:104–112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by The Scientific and Technological Research Council of Turkey (TUBİTAK) [Grant No. 115Y342]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Ata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: LYin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öner, M.R., Ata, O.N. & Yapıcı, S. Bipolar membrane electrodialysis for mixed salt water treatment: determination of optimum conditions by topsis-based taguchi method. Int. J. Environ. Sci. Technol. 20, 587–604 (2023). https://doi.org/10.1007/s13762-022-04067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04067-1

Keywords

Navigation