Skip to main content

Advertisement

Log in

Effects of ethylenediaminetetraacetic acid-assisted phytoremediation on soil physicochemical and biological properties

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Ethylenediaminetetraacetic acid is increasingly used to improve heavy metal mobility and bioavailability in soil for phytoremediation, although little empirical data exist on its potential effects on soil properties essential to phytoremediation success and ecosystem health. In this study, field-based ethylenediaminetetraacetic acid-, nitrogen–phosphorus–potassium fertilizer-, and combination of ethylenediaminetetraacetic acid and nitrogen–phosphorus–potassium fertilizer-assisted phytoremediation were used to determine the effects of ethylenediaminetetraacetic acid on some soil physicochemical and biological parameters. Ethylenediaminetetraacetic acid reduced the levels of pH, organic matter, calcium, potassium, magnesium, total fungi and bacteria and improved microbial carbon and nitrogen as well as nitrate and ammonium contents. However, it had no effect on soil field capacity. In general, ethylenediaminetetraacetic acid had a greater explanatory power for the variations in pH, organic matter and total bacteria relative to the other treatments and time. Nitrogen–phosphorus–potassium fertilizer reduced the effects of ethylenediaminetetraacetic acid on soil pH, organic matter, potassium, phosphorus, microbial carbon and nitrogen. Hence, combination of ethylenediaminetetraacetic acid and nitrogen–phosphorus–potassium fertilizer was the most effective in improving the soil conditions for phytoremediation. The most significant changes in the effects of the treatments on all but nitrogen were observed in the first six months of the study, corresponding with the wet season, suggesting the need to consider the season or timeframe when designing field-based assisted phytoremediation. The results broadly demonstrate the effectiveness of nitrogen–phosphorus–potassium fertilizer in compensating for the potentially negative effects of ethylenediaminetetraacetic acid on soil properties during phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott TS (ed) (1985) Soil testing service: methods and interpretation. NSW Department of Agriculture

  • Abdul Khalil HPS, Hossain S, Rosaman E, Azil NA, Saddon N, Davoudpoura Y, Islam N, Dungani R (2015) The role of soil properties and it’s interaction towards quality plant fiber: a review. Renew Sustain Energy Rev 43:1006–1015. https://doi.org/10.1016/j.rser.2014.11.099

    Article  Google Scholar 

  • Akoto R, Anning AK (2021) Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environ Adv 3(1–8):100028. https://doi.org/10.1016/j.envadv.2020.100028

    Article  CAS  Google Scholar 

  • Alakomi HL, Paananen A, Suihko ML, Helander IM, Saarela M (2006) Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration. Appl Environ Microbiol 72(7):4695–4703. https://doi.org/10.1128/AEM.00142-06

    Article  CAS  Google Scholar 

  • Altin A, Degirmenci M (2005) Lead (II) removal from natural soils by enhanced electrokinetic remediation. Sci Total Environ 337:1–10

    Article  CAS  Google Scholar 

  • Anning AK, Akoto R (2018) Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicol Environ Saf 148(2018):97–104. https://doi.org/10.1016/j.ecoenv.2017.10.014

    Article  CAS  Google Scholar 

  • Anning AK, Mccarthy BC (2013) Competition, size and age affect tree growth response to fuel reduction treatments in mixed-oak forests of Ohio. For Ecol Manage 307:74–83. https://doi.org/10.1016/j.foreco.2013.07.008

    Article  Google Scholar 

  • Arochas A, Volker K, Foncecar R (2010) Application of vetiver grass for mine sites rehabilitation in Chile'. Latin American vetiver conference, Santiago, Chile

  • Bibiani-Anwhiaso-Bekwai District Assembly (BABDA) (2006) Bibiani-Anwhiaso-Bekwai District Assembly's medium term. Development Plan 2006–2007 (20pp)

  • Blight G (2011) Mine waste: a brief overview of origins, quantities, and methods of storage. Geoffrey 77:77–88. https://doi.org/10.1016/B978-0-12-381475-3.10005-1

    Article  Google Scholar 

  • Botta C (2015) Understanding your step by step. Yea River Catchment Landcare Group

  • Bradi HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 2004(277):1–18

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Total nitrogen. In: Page AL, Miller RH, Kenney DR (eds) Method of soil analysis, part 2. Agronomy monograph No 9. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

    Article  CAS  Google Scholar 

  • Chen B, Shen H, Li X, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261(1–2):219–229. https://doi.org/10.1023/B:PLSO.0000035538.09222.ff

    Article  CAS  Google Scholar 

  • Danh TL, Truong P, Mammucari R, Tran TL, Foster N (2009) Vetiver grass, vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremed 11:664–691

    Article  CAS  Google Scholar 

  • Datta S, Taghvaeian S, Stivers J (2017) Understanding soil water content and thresholds for irrigation management. Okla Cooper Exten Fact Sheets BAE 153(6):1–7

    Google Scholar 

  • Dawki UM, Dikko AU, Noma SS, Aliu U (2013) Heavy metals and physiochemical properties of soils in Kano urban agricultural lands. Niger J Basic Appl Sci 21:239–246

    Article  Google Scholar 

  • Du RJ, He EK, Tang YT, Hu PJ, Ying RR, Morel JL, Qiu RL (2011) How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata. Int J Phytoremed 13:1024–1036

    Article  CAS  Google Scholar 

  • Fonseca R, Diaz C, Castillo M, Candia J, Truong . (2006) Preliminary results of pilot studies on the use of vetiver grass for mine rehabilitation in chile. Proc. ICV4, Caracas, Venezuela

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Article  Google Scholar 

  • Ghosh K, Sarkar S, Brahmachari K, Porel S (2018) Standardizing row spacing of vetiver for river bank stabilization of lower ganges. Curr J Appl Sci Technol 26(2):1–13. https://doi.org/10.9734/CJAST/2018/39328

    Article  Google Scholar 

  • Gonzalez I, Neaman A, Cortes A, Rubio P (2014) Effect of compost and biodegradable chelate addition on phytoextraction of copper by Oenothera picensis grown in Cu-contaminated acid soils. Chemosphere 95:111–115

    Article  CAS  Google Scholar 

  • Gonzalez-Sangregorio MV, Trasar-Cepeda MC, Leiros MC, Gil-Sotres F, Guitian-Ojea F (1991) Early stages of lignite mine soil genesis: changes in biochemical properties. Soil Biol Biochem 23:589–595

    Article  CAS  Google Scholar 

  • Guo X, Zhao G, Zhang G, He Q, Wei Z, Zheng W, Qian T, Wu Q (2018) Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere 209(2018):776–782

    Article  CAS  Google Scholar 

  • Hariyadi BW, Nizak F, Nurmalasari IR, Kogoya Y (2019) Effect of dose and time of npk fertilizer application on the growth and yield of tomato plants (Lycopersicum Esculentum Mill). J Agric Sci Agric, pp101–111

  • Heil J, Vereecken H, Brüggemann N (2016) A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur J Soil Sci 67(1):23–39. https://doi.org/10.1111/ejss.12306

    Article  CAS  Google Scholar 

  • Indoria AK, Sharma KL, Reddy KS, Rao CS (2016) Role of soil physical properties in soil health management and crop productivity in rainfed systems–II. Management technologies and crop productivity. Curr Sci 110(3):320–328

    Article  CAS  Google Scholar 

  • Jaremko D, Kalembasa D (2014) A comparison of methods for the determination of cation exchange capacity of soils. Ecol Chem Eng 21(3):487–498. https://doi.org/10.2478/eces-2014-0036

    Article  CAS  Google Scholar 

  • Jez E, Lestan D (2016) EDTA retention and emissions from remediated soil. Chemosphere 151:202–209. https://doi.org/10.1016/j.chemosphere.2016.02.088

    Article  CAS  Google Scholar 

  • Kalf D, Van den hoop MAG, Rila J, Posthuma C, Traas TP (2003) Environmental risk limits for ethylene diamine tetra acetic aciid (EDTA). In RIVM REPORT: Vol 601501010/

  • Kamran MA, Eqani SAMAS, Katsoyiannis A, Xu R, Bibi S, Benizri E, Chaudhary HJ (2016) Phyto-extraction of Chromium (Cr) and Influence of Pseudomonas Putida on Eruca Sativa Growth. J Geochem Explor 10:10. https://doi.org/10.1016/j.gexplo.2016.09.005

    Article  CAS  Google Scholar 

  • Kandeler E, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23:299–306

    Article  CAS  Google Scholar 

  • Karla YP, Maynard DG (1991) Methods manual fo forest soil and plant analysis. For. Can., Northern Reg., North. For Cent., Edmonton, Alberta. Inf. Rep. NOR-X-319

  • Keeney DR, Nelson DW (1982) Nitrogen in organic forms. In: Page AL et al (eds) Methods of soil analysis. Part 2. Agronomy No. 9. American Society of Agronomy, Madison, pp 643–698

    Google Scholar 

  • Kidd P, Mench M, Álvarez-lópez V, Bert V, Dimitriou I, Friesl-hanl W, Herzig R, Janssen JO, Kolbas A, Müller I, Neu S, Renella G, Ruttens A, Vangronsveld J, Puschenreiter M (2015) Agronomic practices for improving gentle remediation of trace element-contaminated soils agronomic practices for improving gentle remediation of trace element-contaminated soils. Environ Earth Sci 17:1005–1037. https://doi.org/10.1080/15226514.2014.1003788

    Article  CAS  Google Scholar 

  • Krujatz F, Haarstrick A, Nörtemann B, Greis T (2012) assessing the toxic effects of nickel, cadmium and edta on growth of the plant growth-promoting rhizobacterium Pseudomonas brassicacearum. Water Air Soil Pollut 223:1281–1293. https://doi.org/10.1007/s11270-011-0944-0

    Article  CAS  Google Scholar 

  • Li NY, Fu QL, Zhuang P, Guo B, Zou B, Li ZA (2012) Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cul- tivated potential Cd hyperaccumulator. Int J Phytoremed 14:162–173

    Article  Google Scholar 

  • Li SX, Wang ZH, Stewart BA (2013) Chapter five—Responses of crop plants to ammonium and nitrate N. In: Donald LS (ed) Advances in agronomy. Academic Press, Cambridge, pp 205–397

    Google Scholar 

  • Lim JM, Jin B, Butcher DJ (2012) A comparison of electrical stimulation for electrodic and EDTA-enhanced phytoremediation of lead using Indian mustard (Brassica juncea). Bull Korean Chem Soc 33:2737–3274

    Article  CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB (2006) Heavy metal displacement in EDTA-assisted phytoremediation of biosolids soil. Water Sci Technol 54(5):147–153. https://doi.org/10.2166/wst.2006.557

    Article  CAS  Google Scholar 

  • Liu HW, Wang HY, Ma YB, Wang HH, Shi Y (2016) Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere 144:1960–1965

    Article  CAS  Google Scholar 

  • Lodge DJ, Ingham ER (1991) A comparison of agar film techniques for estimating fungal biovolumes in litter and soil. Agr Ecosyst Environ 34:131–144

    Article  Google Scholar 

  • Luo J, Cai L, Qi S, Wu J, Gu XWS (2017) Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.07.036

    Article  Google Scholar 

  • Manouchehri N, Bermond A (2006) EDTA in soil science: a review of its application in soil trace metal studies. Terr Aquat Environ Toxicol 3(1):1–15

    Google Scholar 

  • Manouchehri N, Besancon S, Bermond A (2006) Major and trace metal extraction from soil by EDTA : Equilibrium and kinetic studies. Anal Chim Acta 559:105–112. https://doi.org/10.1016/j.aca.2005.11.050

    Article  CAS  Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2005) Basic soil properties. Montana State Univ Extension Serv 2005:1–12

    Google Scholar 

  • Mclntyre DS (1974) Methods of analysis for irrigated soils. Commonwealth Agriculture Bureaux Technical Communications No 54, Farmham Royal, England

  • Mhatre GN, Pankhurst CE (1997) Bioindicators to detect contamination of soils with special reference to heavy metals. In: Pankhurst CE, Doube BM, Gupta VV (eds) Biological indicators of soil health. CAB International, Wallingford, pp 349–369

    Google Scholar 

  • Mirza N, Pervez A, Mahmood Q, Shah M, Farooq U (2014) Effect of EDTA on arsenic phytoextraction by Arundo donax L. Sci vis 20(2):39–48

    Google Scholar 

  • Muhammad D, Chen F, Zhao J, Zhang G, Wu F (2009) Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytorem 11:558–574

    Article  CAS  Google Scholar 

  • Mühlbachová G (2011) Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS. Ecol Eng J 37:1064–1071. https://doi.org/10.1016/j.ecoleng.2010.08.004

    Article  Google Scholar 

  • Nazir R, Khan M, Masab M, Rehman HU, Rauf NU, Shahab S, Ameer N, Sajed M, Ullah M, Rafeeq M, Shaheen Z (2015) Accumulation of Heavy Metals ( Ni, Cu, Cd, Cr, Pb, Zn, Fe ) in the soil, water and plants and analysis of physico-chemical parameters of soil and water Collected from Tanda Dam kohat. J Pharm Sci Res 7(3):89–97

    CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis. Part 2: Chemical and microbiological properties, 2nd edn. Agronomy Monograph, Madison, pp 539–580

    Google Scholar 

  • Nowack B, Schulin R, Robinson B (2006) Critical review critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40(17):5225–5232

    Article  CAS  Google Scholar 

  • Oviedo C, Rodríguez J (2003) EDTA: The chelating agent under environmental scrutiny. Quim Nova 26(6):901–905

    Article  CAS  Google Scholar 

  • Phogat VK, Tomar VS, Dahiya R (2015) Soil Physical Properties. In: Soil science: an introduction (Issue November 2015)

  • Prachayasittikul V, Isarankura-na-ayudhya C, Tantimongcolwat T, Nantasenamat C, Galla HJ (2007) EDTA-induced membrane fluidization and destabilization : Biophysical studies on artificial lipid membranes. Acta Biochim Biophys Sin 39(11):901–913. https://doi.org/10.1111/j.1745-7270.2007.00350.x

    Article  CAS  Google Scholar 

  • Quenea K, Lamy I, Winterton P, Bermond A, Dumat C (2009) Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 1(3–4):217–223. https://doi.org/10.1016/j.geoderma.2008.11.037

    Article  CAS  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 〈https://www.Rproject.org/

  • Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485. https://doi.org/10.3390/life3030482

    Article  Google Scholar 

  • EU RAR (2004) European Union Risk Assessment Report for EDTA (CAS n°60-00-4) (final report), Institute for Health and Consumer Protection - European Chemicals Bureau

  • Reidmiller JS, Smith WL, Sawyer MM, Osburn BI, Stott JL, Cullor JS (2006) Antimicrobial properties of the chelating agent edta on streptococcal Bovine mastitis Isolates. J Food Prot 69(6):1460–1462

    Article  CAS  Google Scholar 

  • Salehi A, Maleki M (2012) Evaluation of soil physical and chemical properties in poplar plantations in North of Iran. Ecologia 2012(4):69–76

    Google Scholar 

  • Sarwar N, Imran M, Rashid M, Ishaque W, Asif M, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals : modifications and future perspectives. Chemosphere 171(2017):710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116

    Article  CAS  Google Scholar 

  • Sauvé S, Martinez CE, McBride M, Hendershot W (2000) Adsorption of free lead by pedogenic oxides, ferrihydrite and leaf compost. Soil Sci Soc Am J 64:595–599

    Article  Google Scholar 

  • Schwarzenbach G, Biederman W, Bangerter GF, Komplexone VI (1946) Neueeinfache Tritmermethodenzur Bestimmung der Wasserhart, Helvetica. Chimmica Acta 29(1946):811–818

    Article  CAS  Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil and Sediment Contamination 23:389–416. https://doi.org/10.1080/15320383.2014.831029

    Article  CAS  Google Scholar 

  • Sharma MS, Raju NS (2013) Correlation of heavy metal contamination with soil properties of industrial areas of Mysore, Karnataka, India by cluster analysis. Int Res J Environ Sci 2:22–27

    Google Scholar 

  • Soderstrom BE (1977) Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol Biochem 9:59–63

    Article  Google Scholar 

  • Staddon PL, Gregersen R, Jakobsen I (2004) The response of two Glomus mycor- rhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Glob Change Biol 2004(10):1909–1921

    Article  Google Scholar 

  • Subhan NN, Gunadi N (2009) Respons tanaman tomat terhadap penggunaan pupuk majemuk NPK 15-15-15 pada tanah latosol pada musim kemarau. Balai penelitian tanaman sayuran, Jl. Tangkuban Parahu No. 517 Lembang, Bandung 40391. Naskah diterima tanggal 27 April 2007 dan disetujui untuk diterbitkan tanggal 25 Mei. J Hort 19(1):40–48

  • Tangahu BV, Rozaimah S, Abdullah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg ) uptake by plants through phytoremediation. Int J Chem Eng. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Tanhan P, Pokethitiyook P, Kruatrachue M, Chaiyarat R, Upatham S (2011) Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: Greenhouse and field trial experiments. Int J Phytoremed 13:897–911

    Article  CAS  Google Scholar 

  • Tassi E, Pouget J, Petruzzelli G, Barbafieri M (2008) The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71:66–73

    Article  CAS  Google Scholar 

  • Toth SJ, Prince AL (1949) Estimation of cation exchange capacity and exchangeable calcium, potassium, and sodium contents of soils by flame photometer techniques. Soil Sci 67(1949):439–445

    Article  CAS  Google Scholar 

  • Vamerali T, Marchio L, Bandiera M, Fellet G, Dickinson NM, Lucchini P, Mosca G, Zerbi G (2012) Advances in agronomic management of phytoremediation: Methods and results from a 10-year study of metal-polluted soils. Italian J Agron 7:323–330

    Google Scholar 

  • Vigliotta G, Matrella S, Cicatelli A, Guarino F, Castiglione S (2016) Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manage 179:93–102. https://doi.org/10.1016/j.jenvman.2016.04.055

    Article  CAS  Google Scholar 

  • Villacis J, Casanoves F, Hang S, Keesstra S, Armas C (2016) Selection of forest species for the rehabilitation of disturbed soils in oil fields in the Ecuadorian Amazon. Sci Total Environ 566:761–770

    Article  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Widdup EE, Chatfield-Reed K, Henry D, Chua G, Samuel MA, Muench DG (2015) Identification of detoxification pathways in plants that are regulated in response to treatment with organic compounds isolated from oil sands process-affected water. Chemosphere 139:47–50

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, Christie P, Wong MH (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50(6):819–822

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr Ecosyst Environ 102(3):307–318. https://doi.org/10.1016/j.agee.2003.09.002

    Article  CAS  Google Scholar 

  • Yang L, Luo CL, Liu Y, Quan LT, Chen YH, Shen ZG (2012) Residual effects of EDDS leachates on plants during EDDS-assisted phytoremediation of copper contaminated soil. Sci Total Environ 444:263–270

    Article  CAS  Google Scholar 

  • Yin Y, Impellitteri CA, You SJ, Allen HE (2002) The importance of organic matter distribution and exact soil: solution ratio on the desorption of heavy metals from soils. Sci Total Environ 287:107–119

    Article  CAS  Google Scholar 

  • Zhang S, Zheng Q, Noll L, Hu Y, Wanek W (2019) Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. Soil Biol Biochem 135(2019):304–315

    Article  CAS  Google Scholar 

  • Zupanc V, Kastelec D, Lestan D, Grcman H (2014) Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives. Environ Pollut 186:56–62. https://doi.org/10.1016/j.envpol.2013.11.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the management of Mensin Gold Bibiani Limited for site permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Akoto.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest to declare.

Additional information

Editorial Responsibility: Jing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akoto, R., Anning, A.K. & Belford, E.J.D. Effects of ethylenediaminetetraacetic acid-assisted phytoremediation on soil physicochemical and biological properties. Int. J. Environ. Sci. Technol. 19, 8995–9010 (2022). https://doi.org/10.1007/s13762-021-03770-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03770-9

Keywords

Navigation