Skip to main content

Advertisement

Log in

Production and characterization of activated carbons from neem bark (Azadirachta indica)

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The acquisition of activated carbon on the market remains a major concern for developing countries due to its non-availability on a large scale. The objective of this work is to determine the physical and chemical characteristics of activated carbons produced from neem bark for use. The preparation of activated carbons was carried out using the chemical method with phosphoric acid (H3PO4) as the activating agent at different concentrations. In order to evaluate the performance of these activated carbons, various parameters have been determined. Thus, the BET method by nitrogen adsorption was used to determine the specific surface area. The t-plot and BJH methods provided knowledge of the pore volumes of the different carbons. The pore topography and the elemental composition were determined by the SEM–EDS method. The surface functions were determined using the Boehm method. The preparation resulted in the carbons CA 25, CA 30 and CA 60. The specific surface area values obtained ranged from 305.10 to 666.38 m2/g. Also, the results indicate a large number of pores on the surface of the carbons with volumes evolving with the increase in H3PO4 concentration. The results also indicate the acidic nature of the surface of each carbon. All these results show that the carbons produced from neem bark have very good characteristics for use in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abo EA, Yobouet YA, Kouakou YU, Trokourey A (2020) Optimisation de la préparation de charbons activés à base d’épis de maïs et caractérisation physico-chimique. Int J Innov Appl Stud 29:1161–1171

    Google Scholar 

  • Aboua KN (2013) Optimisation par le plan Factoriel complet des conditions de production de charbon actif et son utilisation pour l’élimination de colorants et de Métaux lourds en solution aqueuses, Thèse de Doctorat, Université Félix Houphouet Boigny d’Abidjan, Côte d’Ivoire, (p. 164)

  • Alau KK, Gimba CE, Kagbu JA, Nale BY (2010) Preparation of activated carbon from neem (Azadirachta indica) Husk by chemical activation with H3PO4, KOH and ZnCl2. Arch Appl Sci Res 5:451–455

    Article  Google Scholar 

  • Atheba P, Gbassi GK, Dongui B, Bamba D, Yolou FS, Trokourey A (2014) Etudes de la porosité, de la surface spécifique et des fonctions de surface de charbons actifs préparés après carbonisation artisanale des coques de noix de coco. Les Technol De Lab 8(34):12

    Google Scholar 

  • Boehm HP (1966) Chemical identification of surface groups. Academic Press, London, pp 179–274

    Google Scholar 

  • Chen Y, Zhu Y, Wang Z, Li Y, Wang L, Ding L, Gao X, Ma Y, Guo Y (2011) Application studies of activated carbon derived from rice husks produced by chemical-thermal process. Rev Adv Colloid Interface Sci 163:39–52

    Article  CAS  Google Scholar 

  • El Madani MC, Guillard C, Perol N, Chovelon JM, El Azzaouzi M, Zrineh A, Herrmann MJ (2006) Applied catalysis B. Environmental 65:70–76

    Google Scholar 

  • Formed environnement, Le margousier ou neem (Azadirachta indica), world Agroforestry Center, www.worldagroforestrycentre.org/sea/products/afdbases/af/asp/SpeciesInfo.asp?SpID=271, 18

  • Gharib H, Ouederni A (2005) Transformation du grignon d’olive Tunisien en charbon actif par voie chimique à l’acide phosphorique. Récents progres en genie des procedes, ISBN. In : (ed) SFGP, Paris, France, 92 : (pp. 2–910239–66–7)

  • Girgis BS, El-Hendawy A (2002) Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous Mesoporous Mater 52:105–117

    Article  CAS  Google Scholar 

  • Gueye M, Blin JC Brunschwig (2011) Etude de la synthèse des charbons actifs à partir de la biomasse locale par activation chimique avec H3PO4. Journées scientifiques du 2IE (pp 1–6)

  • Guillossou R (2019) Elimination des micropolluants organiques dans les eaux résiduaires urbaines par adsorption sur charbon actif: compréhension des processus et implications opérationnelles, Thèse de doctorat, École des Ponts ParisTech, France (p 250)

  • Haykiri-Acma H, Yaman S, Kucukbayrak S (2006) Gasification of biomass chars in steam-nitrogen mixture. Energy Convers Manage 47(7–8):1004–1013

    Article  CAS  Google Scholar 

  • Jagtoyen M, Derbyshire F (1998) Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36:1085–1097

    Article  CAS  Google Scholar 

  • Khalfaoui AD (2012) Etude Expérimentale de L’élimination de polluants organiques et inorganiques par adsorption sur des matériaux naturels : application aux peaux d’orange et de banane, Thèse de Doctorat, Université Mentouri de Constantine, Algérie, (p. 143)

  • Kouadio DL, Koffi ALC, Diarra M, Kouyaté A, Yapi YAH, Akesse DPV, Doungui KB, Kone M, Dembélé A, Karim SoryTraore KS (2019) Préparation et caractérisation de charbon actif issu de la coque de cacao. Int J Adv Res 7:920–930

    Article  CAS  Google Scholar 

  • Lengaye SC, Bomangayen SB, M’Boliguipa J, Mouangue RM (2019) Etude expérimentale et comparative de filtre composite en argile, charbon actif et filtre moderne à partir des analyses des quatre échantillons des eaux de Dang de la région de l’Adamaoua. J cameroon Acad Sci 15:93–107

    Article  Google Scholar 

  • Lippens BC, Boer JH (1965) Studies on pore systems in catalysts V. The t method. J Catalysis 4:319–323

    Article  CAS  Google Scholar 

  • Maheshwari U, Gupta S (2014) Copper (II) Removal Using activated neem bark from waste water as a low cost adsorbent: column studies. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272149168

  • Maheshwari U, Gupta S (2015) Activated neem bark as a potential low-cost adsorbent for the removal of Cr(VI), Cu(II) and Zn(II) from wastewater. Int'l Conference on biotechnology, nanotechnology & environmental engineering, (pp. 34–36)

  • Mamane OS, Zanguina A, Daou I, Natatou I (2016) Préparation et caractérisation de charbons actifs à base de coques de noyaux de Balanites Eagyptiaca et de Zizyphus Mauritiana, J Société Ouest-Africaine de Chimie, (pp. 59–67)

  • Molina SM, Rodrıguez MRF (2004) Role of chemical activation in the development of carbon porosity, colloids Surf. A: physicochem. Eng Aspects 241:15–25

    Article  Google Scholar 

  • Montes-Molina JA (2008) Effect of pest-controlling neem and maturation on bean growth, soil N and soil CO2 emissions. J Agron Sustain Dev 28:187–194

    Article  CAS  Google Scholar 

  • Nebaghe KC (2016) Adsorption de Cu(II) par le sable de Martil: Etudes des paramètres influençant la réaction d'adsorption et modélisation, Thèse de Doctorat, Université Abdelmalek Essaadi (Maroc), (p. 100)

  • Ounas A, Bergach N, Ennaciri K, Yaacoubi A, Bacoui A (2009) Préparation des charbons actifs à partir des déchets de l’industrie oléicole. Agriculture durable en région Méditerranéenne 23(3): (pp. 393–397)

  • Ramon LMV, Stoecklib F, Castillaa MC, Carrasco CMF (1999) On the characterization of acidic and basic surface sites on carbons by various techniques. Publ Carbon 37(8):1215–1221

    Article  Google Scholar 

  • Reffas A (2010) Etude de l’adsorption de colorants organiques (rouge nylosan et bleu de méthylene) sur des charbons actifs préparés à partir du marc de café, Thèse de doctorat, Université de Mentouri-Constantine (Algérie), (p. 153)

  • Sido-Pabyam M, Guèye M, Blin J, Somé E (2009) Biomass residue valorisation into activated charcoal-Efficiency tests on bacteria and pesticides. Int Inst Water Environ Eng 17:65–73

  • Suárez GF, Martínez A, Tascón JMDَ (2001) Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp. Carbon 39:1103–1116

    Article  Google Scholar 

  • Tan IAW, Ahmad AL, Hameed BH (2008) Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem Eng j 137:462–470

    Article  CAS  Google Scholar 

  • Trachi M, Bourfis N, Benamara S, Gougam H (2014) Préparation et caractérisation d’un charbon actif à partir de la coquille d’ amande (Prunus amygdalus amère). Biotechnol Agron Soc Environ 18(4):492–502

    Google Scholar 

  • Unugul T, Nigiz FU (2020) Preparation and characterization an active carbon adsorbent from waste mandarin peel and determination of adsorption behavior on removal of synthetic dye solutions. Water Air Soil Pollut 231:538p

    Article  Google Scholar 

  • Weber JWJ, Smith EH (1986) Activated carbon adsorption: The state of the art. Stud Environ Sci 29:455–492

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried out within the framework of the training and research unit, specifically in the environmental sciences laboratory of the Nangui Abrogoua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Ouedraogo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouedraogo, C.E., Aboua, K.N., Soro, D.B. et al. Production and characterization of activated carbons from neem bark (Azadirachta indica). Int. J. Environ. Sci. Technol. 18, 3371–3378 (2021). https://doi.org/10.1007/s13762-021-03405-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03405-z

Keywords

Navigation