Skip to main content
Log in

Optimization of removal of lead and cadmium from industrial wastewater by ethylenediamine-modified single-walled carbon nanotubes

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, adsorption of lead and cadmium in wastewater was investigated by ethylenediamine-surface-modified single-walled carbon nanotubes (EDA-SWCNTs) to determine important parameters influencing the performance of carbon nanotubes for the adsorption process and to specify optimum values of the parameters in this process. The adsorbents were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. At 1 atm, the adsorption capacity of carbon nanotubes was increased (52% for Pb and 72% for Cd) after modification with EDA. The effect of concentration of lead and cadmium ions, the dosage of carbon nanotubes, pH, temperature, time, and interfering ions on the removal of Pb2+ and Cd2+ was studied, and adsorption efficiency was evaluated by atomic absorption spectrophotometer. Central composite design modeling was utilized to ascertain the interaction of operating parameters and determining optimum conditions. Optimization results showed that the most important factors in this adsorption process were initial concentration of lead and cadmium, CNT dosage, time, and pH, respectively. The optimum adsorption capacity was found to be 96.91% and 93.47% for lead and cadmium ions, respectively. These values were obtained at 4 mg/L of the initial concentration of metallic ions, by 200 mg of EDA-SWCNTs, adsorption time of 50 min, and pH level of 5. Results of validation tests showed an acceptable agreement between experimental and predicted data (error 1.25% for Pb and 1.95% for Cd). The equilibrium isotherm study indicated a good conformity with the Langmuir model suggesting a monolayer homogenous adsorption of lead and cadmium onto carbon nanotubes (R2 = 0.999 for Pb and R2 = 0.997 for Cd).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agnihotri S, Rood MJ, Rostam-Abadi M (2005) Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 43(11):2379–2388

    Article  CAS  Google Scholar 

  • Amiri A, Maghrebi M, Baniadam M, Heris SZ (2011) One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl Surf Sci 257(23):10261–10266

    Article  CAS  Google Scholar 

  • Assi MA, Hezmee MNM, Haron AW, Sabri MYM, Rajion MA (2016) The detrimental effects of lead on human and animal health. Vet World 9(6):660–671

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243

    Article  CAS  Google Scholar 

  • Bayrak Y, Yesiloglu Y, Gecgel U (2006) Adsorption behavior of Cr (VI) on activated hazelnut shell ash and activated bentonite. Microporous Mesoporous Mater 91(1–3):107–110

    Article  CAS  Google Scholar 

  • Chen Y, Muthukumar VS, Wang Y, Li C, Krishnan SS, Sai SSS, Venkataramaniah K, Mitra S (2009) Microwave-assisted solid-state grafting of multi-walled carbon nanotubes on polyurethane for the synthesis of a composite with optical limiting properties. J Mater Chem 19(36):6568–6572

    Article  CAS  Google Scholar 

  • Dinh VP, Li NC, Tuyen A, Hung NQ, Nguyen VD, Nguyen NT (2018) Insight into adsorption mechanism of lead(II) from aqueous solution by chitosan loaded MnO2 nanoparticles. Mater Chem Phys 207:294–302

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int Jou Phys Sci 2(5):112–118

    Google Scholar 

  • Dyke CA, Tour JM (2004) Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem-Eur J 10(4):812–817

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57(1906):385–471

    CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • Gauden PA, Terzyk AP, Rychlicki G, Kowalczyk P, Lota K, Raymundo-Pinero E, Frackowiak E, Béguin F (2006) Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chem Phys Lett 421(4–6):409–414

    Article  CAS  Google Scholar 

  • Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124(5):760–761

    Article  CAS  Google Scholar 

  • Ghaedi M, Hajati S, Zaree M, Shajaripour Y, Asfaram A, Purkait MK (2015) Removal of methyl orange by multiwall carbon nanotube accelerated by ultrasound devise: Optimized experimental design. Adv Powder Technol 26(4):1087–1093

    Article  CAS  Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2012) Adsorption of heavy metals on kaolinite and montmorillonite: a review. Phys Chem Chem Phys 14(19):6698–6723

    Article  Google Scholar 

  • Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859

    Article  CAS  Google Scholar 

  • Ho YS, Wase DJ, Forster CF (1995) Batch nickel removal from aqueous solution by sphagnum moss peat. Water Res 29(5):1327–1332

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(56):58

    Google Scholar 

  • Jusoh A, Shiung LS, Noraaini A, Noor MJMM (2007) A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination 206(1–3):9–16

    Article  CAS  Google Scholar 

  • Kazemipour M, Ansari M, Tajrobehkar S, Majdzadeh M, Kermani HR (2008) Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. J Hazard Mater 150(2):322–327

    Article  CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. BioresourTechnol 96(13):1518–1521

    Article  CAS  Google Scholar 

  • Koukouzas N, Vasilatos C, Itskos G, Mitsis I, Moutsatsou A (2010) Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials. J Hazard Mater 173(1–3):581–588

    Article  CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98

    Article  CAS  Google Scholar 

  • Lata S, Singh PK, Samadder SR (2014) Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol 12(4):1461–1478

    Article  Google Scholar 

  • Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357(3–4):263–266

    Article  CAS  Google Scholar 

  • Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  • Liu Z, Zhong X, Wang Y, Ding Z, Wang C, Wang G, Liao S (2018) An efficient adsorption of manganese oxides/activated carbon composite for lead (II) ions from aqueous solution. Arab J Sci Eng 43:2155–2165

    Article  CAS  Google Scholar 

  • Liu Y, Xiong Y, Xu P, Pang Y, Du C (2020) Enhancement of Pb (II) adsorption by Boron doped ordered mesoporous carbon: isotherm and kinetics modeling. Sci Total Environ 708:134918

    Article  CAS  Google Scholar 

  • Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123(9):2058–2059

    Article  CAS  Google Scholar 

  • Lu C, Liu C (2006) Removal of nickel (II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81(12):1932–1940

    Article  CAS  Google Scholar 

  • Moosavirad SM, Sarikhani R, Shahsavani E, Mohammadi SZ (2015) Removal of some heavy metals from inorganic industrial wastewaters by ion exchange method. J Water Chem Technol 37(4):191–199

    Article  Google Scholar 

  • Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64

    Article  CAS  Google Scholar 

  • Ogden MD, Moon EM, Wilson A, Pepper SE (2017) Application of chelating weak base resin Dowex M4195 to the recovery of uranium from mixed sulfate/chloride media. Chem Eng J 317:80–89

    Article  CAS  Google Scholar 

  • Pillay K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 166(2–3):1067–1075

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231

    Article  CAS  Google Scholar 

  • Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279(2):307–313

    Article  CAS  Google Scholar 

  • Taamneh Y, Sharadqah S (2017) The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl Water Sci 7(4):2021–2028

    Article  CAS  Google Scholar 

  • Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    Article  CAS  Google Scholar 

  • Wang YH, Lin SH, Juang RS (2003) Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. J Hazard Mater 102(2–3):291–302

    Article  CAS  Google Scholar 

  • Weng CH, Huang CP (2004) Adsorption characteristics of Zn (II) from dilute aqueous solution by fly ash. Colloids Surf A 247(1–3):137–143

    Article  CAS  Google Scholar 

  • Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40(6):1855–1861

    Article  CAS  Google Scholar 

  • Zeng D, Dai Y, Zhang Z, Wang Y, Cao X, Liu Y (2020) Magnetic solid-phase extraction of U (VI) in aqueous solution by Fe3O4@ hydroxyapatite. J Radioanal Nucl Chem 324:1329–1337

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang S, Zhang L (2014) Microwave-assisted modification of carbon nanotubes with biocompatible polylactic acid. J Mater Sci Chem Eng 2(1):7–12

    CAS  Google Scholar 

  • Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3(8):1107–1113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Karoon Oil and Gas Production Company (Ahwaz, Khuzestan Province, Iran) for supporting this project. They also highly appreciate Dr. Majid Baniadam, at Department of Chemical Engineering, Ferdowsi University of Mashhad (Mashhad, Khorasan Razavi Province, Iran) for his technical information and suggestions through this work.

Funding

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest, or nonfinancial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Parvareh.

Ethics declarations

Conflict of interest

There is no conflict of interest concerning this study.

Additional information

Editorial Responsibility: Samareh Mirkia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fard, E.M., Parvareh, A. & Moravaji, M.K. Optimization of removal of lead and cadmium from industrial wastewater by ethylenediamine-modified single-walled carbon nanotubes. Int. J. Environ. Sci. Technol. 19, 2747–2760 (2022). https://doi.org/10.1007/s13762-021-03390-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03390-3

Keywords

Navigation