Skip to main content

Advertisement

Log in

Assessment of phase distribution and removal of metals in anaerobic digesters

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A determination of the mobility and bioavailability of metals could provide more comprehensive knowledge about the real environmental potential of anaerobic biodigestion and health risks associated with inappropriately treated wastewater. This study aims to determine the distribution of cobalt, copper, iron, manganese, nickel and zinc among the particulate and dissolved fractions in three wastewater types (molasses, vinasse, and acid mine drainage). Affluent and effluent samples from three bioreactors analyzing each wastewater type were collected and separated into dissolved and total fractions; metal partitioning and removal efficiencies from anaerobic treatment were also evaluated. In the influent, substantial proportions of copper and iron (particulate fraction > 70%) are present in the particulate fraction that can be removed more easily than the dissolved fractions of cobalt, nickel, manganese and zinc (dissolved fraction > 53%), requiring subsequent removal techniques, such as ion exchange. For biotechnological applications, this study indicates the substantial potential of the anaerobic treatment for metal removal as an innovative eco-friendly process that minimizes the use of non-renewable resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison JD, Allison TL (2005) Partition coefficients for metals in surface water, soil, and waste. EPA/600/R-05/074 technical report. U.S. Environmental Protection Agency, Washington D.C

    Google Scholar 

  • APHA, AWWA, WPCF (1989) Standard methods for the examination of water and wastewater, 17th ed. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington D.C.

  • APHA, AWWA, WPCF (2005) Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington D.C.

  • Appels L, Lauwers J, Degrve J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011) Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sustain Energy Rev 15(9):4295–4301

    CAS  Google Scholar 

  • Aquino SF, Brandt EMF, Chernicharo CAL (2013) Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: revisão da literatura. Eng Sanit Ambient 18(3):187–204

    Google Scholar 

  • Bekmezci OK, Ucar D, Kaksonen AH, Sahinkaya E (2011) Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. J Hazard Mater 189(3):670–676

    CAS  Google Scholar 

  • Busetti F, Badoer S, Cuomo M, Rubino B, Traverso P (2005) Occurrence and removal of potentially toxic metals and heavy metals in the wastewater treatment plant of fusina (Venice, Italy). Ind Eng Chem Res 44:9264–9272

    CAS  Google Scholar 

  • Buzier R, Tusseau-Vuillemin MH, Dit Meriadec MC, Rousselot O, Mouchel JM (2006) Trace metal speciation and fluxes within a major French wastewater treatment plant: impact of the successive treatments stages. Chemosphere 65:2419–2426

    CAS  Google Scholar 

  • Buzier R, Tusseau-Vuillemin MH, Keirsbulck M, Mouchel JM (2011) Inputs of total and labile trace metals from wastewater treatment plants effluents to the Seine River. Phys Chem Earth 36:500–505

    Google Scholar 

  • Calugaru IL, Genty T, Neculita C (2018) Treatment of manganese in acid and neutral mine drainage using modified dolomite. Int J Environ Impacts Manag Mitig Recovery 1:323–333

    Google Scholar 

  • Campaner VP, Silva WL (2009) Processos físico químicos em drenagem ácida de minas em mineração de carvão do sul do Brasil. Quim Nova 32:146–152

    CAS  Google Scholar 

  • Carletti G, Fatone F, Bolzonella D, Cecchi F (2008) Occurrence and fate of heavy metals in large wastewater treatment plants treating municipal and industrial wastewaters. Water Sci Technol 57(9):1329–1336

    CAS  Google Scholar 

  • Castro Neto ES, Aguiar ABS, Rodriguez RP, Sancinetti GP (2018) Acid mine drainage treatment and metal removal based on a biological sulfate-reducing process. Braz J Chem Eng 35(2):543–552

    CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    CAS  Google Scholar 

  • Chernicharo CAL, Van Lier JB, Noyola A, Ribeiro TB (2015) Anaerobic sewage treatment: state of the art, constraints, and challenges. Rev Environ Sci Biotechnol 14(4):649–679

    CAS  Google Scholar 

  • Chipasa KB (2003) Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Manage 23:135–143

    CAS  Google Scholar 

  • Choubert JM, Pomiès M, Ruel SM, Coquery M (2011) Influent concentrations and removal performances of metals through municipal wastewater treatment processes. Water Sci Technol 63(9):1967–1973

    CAS  Google Scholar 

  • Currie LA (1995) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl Chem 67(10):1699–1723

    CAS  Google Scholar 

  • de la Varga D, Díaz MA, Ruiz I, Soto M (2013) Heavy metal removal in an UASB-CW system treating municipal wastewater. Chemosphere 93:1317–1323

    Google Scholar 

  • Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenerg 35(3):992–998

    CAS  Google Scholar 

  • Dimpe KM, Ngila JC, Mabuba N, Nomgongo PN (2014) Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge. Phys Chem Earth 76–78:42–48

    Google Scholar 

  • Duc TA, Loi VD, Thao TT (2013) Partition of heavy metals in a tropical river system impacted by municipal waste. Environ Monit Assess 185:1907–1925

    CAS  Google Scholar 

  • Facchin V, Cavinato C, Pavan P, Bolzonella D (2013) Batch and continuous mesophilic anaerobic digestion of food waste: effect of trace elements supplementation. Chem Eng Trans 32:457–462

    Google Scholar 

  • Fermoso FGF, Bartacek J, Jansen S, Lens PNLP (2009) Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Sci Total Environ 407(12):3652–3667

    CAS  Google Scholar 

  • Fermoso FG, van Hullebusch ED, Guibaud G, Collins G, Svenson B, Carliell-Marquet C, Vink J, Esposito G, Frunzo L (2015) Fate of trace metals in anaerobic digestion. Adv Biochem Eng Biotechnol 151:171–195

    CAS  Google Scholar 

  • Franklin RJ (2001) Full-scale experiences with anaerobic treatment of industrial wastewater. Water Sci Technol 44(8):1–6

    Google Scholar 

  • Glass JB, Orphan V (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 3(61):1–20

    Google Scholar 

  • Gonçalves MMM, Costa ACA, Leite SGF, Sant’anna Jr GL, (2007) Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source. Chemosphere 69:1815–1820

    Google Scholar 

  • Hallberg KB, Johnson DB (2005) Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Sci Total Environ 338(1–2):115–124

    CAS  Google Scholar 

  • Hargreaves AJ, Vale P, Whelan J, Constantino C, Dotro G, Campo P, Cartmell E (2017) Distribution of trace metals (Cu, Pb, Ni, Zn) between particulate, colloidal and truly dissolved fractions in wastewater treatment. Chemosphere 175:239–246

    CAS  Google Scholar 

  • Harris DC (2007) Sample Preparation. Quantitative chemical analysis, 7th edn. W.H. Freeman and Company, New York, pp 650–655

    Google Scholar 

  • Hockin SL, Gadd GM (2007) Bioremediation ofmetals and metalloids by precipitation and cellular binding. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 405–434

    Google Scholar 

  • Holm-Nielsen JP, Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484

    CAS  Google Scholar 

  • Huang CP, Wang JM (2001) Factors affecting the distribution of heavy metals in wastewater treatment processes: role of sludge particulate. Water Sci Technol 44(10):47–52

    CAS  Google Scholar 

  • Janke L, Leite AF, Batista K, Silva W, Nikolausz M, Nelles M, Stinner W (2016) Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresour Technol 217:10–20

    CAS  Google Scholar 

  • Karvelas M, Katsoyiannis A, Samara C (2003) Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere 53(10):1201–1210

    CAS  Google Scholar 

  • Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. Environmental Deterioration and Human Health. Springer, Dordrecht, pp 55–71

    Google Scholar 

  • Kousi P, Remoundaki E, Hatizikioseyian A, Battaglia-Brunet F, Joulian C, Kousteni V, Tzecos M (2011) Metal precipitation in an ethanol-fed, fixed-bed sulphate-reducing bioreactor. J Hazard Mater 189:677–684

    CAS  Google Scholar 

  • Krug FJ, Nóbrega JA, Guerra MBB, Rocha FRP, Matias TB (2016) Métodos de preparo de amostras para análise elementar, 1st edn. Edit SBQ, São Paulo

    Google Scholar 

  • Kumar B, Kumar KS, Priya M, Mukhopadhyay D, Shah R (2010) Distribution, partitioning, bioaccumulation of trace elements in water, sediment and fish from sewage fed fish ponds in eastern Kolkata. India Toxicol Environ Chem 92(2):243–260

    CAS  Google Scholar 

  • Kumar M, Gogoi A, Mukherjee S (2020) Metal removal, partitioning and phase distributions in the wastewater and sludge: Performance evaluation of conventional, upflow anaerobic sludge blanket and downflow hanging sponge treatment systems. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.119426

    Article  Google Scholar 

  • Legros S, Levard C, Marcato-Romain CE, Guiresse M, Doelsch E (2017) Anaerobic Digestion Alters Copper and Zinc Speciation. Environ Sci Technol 51:10326–10334

    CAS  Google Scholar 

  • Lokeshwari H, Chandrappa GT (2006) Impact of heavy metal contamination of Belladur Lake on soil and cultivated vegetation. Curr Sci 91:622–627

    CAS  Google Scholar 

  • Marcato-Romain CE, Pinelli E, Cecchi M, Winterton P, Guiresse M (2009) Bioavailability of Cu and Zn in raw and anaerobically digested pig slurry. Ecotox Environ Safe 72:1538–1544

    Google Scholar 

  • Matsuura N, Hatamoto M, Sumino H, Syutsubo K, Yamaguchi T, Ohashi A (2015) Recovery and biological oxidation of dissolved methane in effluent from UASB treatment of municipal sewage using a two-stage closed downflow hanging sponge system. J Environ Manag 151:200–209

    CAS  Google Scholar 

  • Meynburg G, Holtz C, Goetz D (1995) Heavy metals in the environment. In: International Conference, Hamburg.

  • Munksgaard NC, Parry DL (2001) Trace metals, arsenic and lead isotopes in dissolved and particulate phases of north Australian coastal and estuarine seawater. Mar Chem 75:165–184

    CAS  Google Scholar 

  • Nguyen HL, Leermakers M, Elskens M, Ridder FD, Doan TH, Baeyens W (2005) Correlations, partitioning and bioaccumulation of heavy metals between different compartments of Lake Balaton. Sci Total Environ 341:211–226

    CAS  Google Scholar 

  • Niz MYK, Etchelet I, Fuentes L, Etchebehere C, Zaiat M (2019) Extreme thermophilic condition: an alternative for long-term biohydrogen production from sugarcane vinasse. Int J Hydrogen Energy 44:22876–22887

    CAS  Google Scholar 

  • Nogueira EW, Godoi LAG, Brucha G, Damianovic MHRZ (2018) Tratamento de drenagem ácida de minas sintética utilizando reator anaeróbio de leito fixo-estruturado e fluxo descendente (DFSBR). In: Anais II Sem. do Proj. Tem. Aplicação do conceito biorrefinaria a estações tratamento biológico águas residuárias o controle da poluição ambiental aliado à recuperação matéria e energia, São Carlos/SP, pp 346–354.

  • Oliveira CA (2018) Digestão anaeróbia termofílica do melaço de cana-de- açúcar em reatores de leito fixo estruturado de duas fases e fase única para a produção de biogás. Dissertation, Universidade de São Paulo-USP

  • Oliveira AS, Bocio A, Trevilato TMB, Takayanagui AMM, Domingo JL, Segura-Muñoz SI (2007) Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant. Env Sci Pollut Res 14(7):483–489

    CAS  Google Scholar 

  • Onodera T, Okubo T, Uemura S, Yamaguchi T, Ohashi A, Harada H (2016) Longterm performance evaluation of down-flow hanging sponge reactor regarding nitrification in a full-scale experiment in India. Bioresour Technol 204:177–184

    CAS  Google Scholar 

  • Osuna MB, Iza J, Zandvoort M, Lens PNL (2003) Essential metal depletion in an anaerobic reactor. Water Sci Technol 48:1–8

    CAS  Google Scholar 

  • Sahinkaya E (2009) Microbial sulfate reduction at low (8 °C) temperature using waste sludge as a carbon and seed source. Int Biodeterior Biodegrad 63:245–251

    CAS  Google Scholar 

  • Salomons W (1995) Environmental impact of metals derived from mining activities: processes, predictions, prevention. J Geochem Explor 52:5–23

    CAS  Google Scholar 

  • Ščančar J, Milačič R, Stražar M, Burica O (2000) Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Sci Total Environ 250(1–3):9–19

    Google Scholar 

  • Schijf J, Zoll AM (2011) When dissolved is not truly dissolved: the importance of colloids in studies of metal sorption on organic matter. J Colloid Interface Sci 361:137–147

    CAS  Google Scholar 

  • Sheoran AS, Sheoran V, Choudhary RP (2010) Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review. Minerals Eng 23:1073–1100

    CAS  Google Scholar 

  • Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55

    CAS  Google Scholar 

  • Speece RE (1996) Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Nashville

    Google Scholar 

  • Takashima M, Shimada K, Speece RE (2011) Minimum requirements for trace metals (iron, nickel, cobalt, and zinc) in thermophilic and mesophilic methane fermentation from glucose. Water Environ Res 83:339–346

    CAS  Google Scholar 

  • Tandukar M, Machdar I, Uemura S, Ohashi A, Harada H (2006) Potential of a combination of UASB and DHS reactor as a novel sewage treatment system for developing countries: long-term evaluation. J Environ Eng 132(2):166–172

    CAS  Google Scholar 

  • USEPA-U.S. Environmental Protection Agency (1996). The metals translator: guidance for calculating a total recoverable permit limit from a dissolved criterion, EPA 823-B-96–007.

  • Üstün GE (2009) Occurrence and removal of metals in urban wastewater treatment plants. J Hazard Mater 172(833–838):2009

    Google Scholar 

  • Wang J, Huang CP, Allen HE (2006) Predicting metals partitioning in wastewater treatment plant influents. Water Res 40(7):1333–1340

    CAS  Google Scholar 

  • Weiner ER (2013) Applications of Environmental Aquatic Chemistry: A practical guide, 3rd edn. Taylor, Boca Raton

    Google Scholar 

  • WERF-Water Environmental Research Foundation (2000) Chemical characteristics and solids uptake of heavy metals in wastewater treatment plant. Final Report Project 93-CTS-1.

  • Windom HL, Byrd JT, Smith RG Jr, Huan F (1991) Inadequacy of NASQAN data for assessing metal trends in the nation’s rivers. Environ Sci Technol 25:1137–1142

    CAS  Google Scholar 

  • Wiśniewska A, Saeid A, Chojnacka K (2018) Trace Elements in Agricultural and Industrial Wastes. In: Chojnacka K, Saeid A (eds) Recent Advances in Trace Elements. Wiley, Chichester

    Google Scholar 

  • Worm P, Fermoso FG, Lens PNL, Plugger C (2009) Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium. Enzyme Microb Technol 45:139–145

    CAS  Google Scholar 

  • Worms IA, Szigeti ZAG, Dubascoux S, Lespes G, Traber J, Sigg L, Slaveykova VI (2010) Colloidal organic matter from wastewater treatment plant effluents: characterization and role in metal distribution. Water Res 44:340–350

    CAS  Google Scholar 

  • Zandvoort MH, van Hullebusch ED, Golubnic S, Gieteling J, Lens PNL (2006) Induction of cobalt limitation in methanol-fed UASB reactors. J Chem Technol Biotechnol 81(9):1486–1495

    CAS  Google Scholar 

  • Zdeb M, Pawłowska M, Pacan J (2020) The influence of anaerobic digestion on selected heavy metals fractionation in sewage sludge. J Ecol Eng 21(3):27–35

    Google Scholar 

  • Zhang C (2007) Fundamentals of environmental sampling and analysis. Wiley, Hoboken

    Google Scholar 

  • Zhang L, Ouyang W, Li A (2012) Essential role of trace elements in continuous anaerobic digestion of food waste. Procedia Environ Sci 16:102–111

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the funding agencies: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Processes: 2015/06246-7; 2016/24526-0 and 2017/18075-8), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Process: 303469/2017-0) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. M. Yabuki.

Additional information

Editorial responsibility: Parveen Fatemeh Rupani.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yabuki, L.N.M., Queluz, J.G.T. & Garcia, M.L. Assessment of phase distribution and removal of metals in anaerobic digesters. Int. J. Environ. Sci. Technol. 19, 463–474 (2022). https://doi.org/10.1007/s13762-021-03166-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03166-9

Keywords

Navigation