Mathematical and experimental investigation of sound absorption behavior of sustainable kenaf fiber at low frequency

Abstract

Natural materials are being employed as an option for controlling noise pollution, mainly via sound absorption mechanism. Specifically, natural fibers have been selected for use since they are environmentally friendly as well as easily and abundantly available. This paper discusses the mathematical and experimental examination of the sound absorption behavior of sustainable kenaf fiber at low-frequency range using the Delany–Bazley model (D–B model) as well as Nelder–Mead method and comparing the results with experimental findings. For this reason, we prepared S1-S16 samples of natural kenaf fibers at different thicknesses and bulk densities to measure the values of airflow resistivity and sound absorption coefficients. The predicted values obtained from both the D–B model and best-fit inverse approach presented by the Nelder–Mead method compared with experimental data measured using impedance tube. Accordingly, by applying a least-square fit procedure, the values that have best predicted both the impedance test and the propagation constant laws were evaluated. The inverse laws approach applied to determine the different physical parameters such as porosity, thickness, airflow resistivity as well as predicting the absorption performance of the kenaf fiber at low frequency ranges.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Allard J-F, Champoux Y (1992) New empirical equations for sound propagation in rigid frame fibrous materials. J Acoust Soc Am 91(6):3346–3353

    Article  Google Scholar 

  2. Asdrubali F, D’Alessandro F, Schiavoni S (2015) A review of unconventional sustainable building insulation materials. Sustain Mater Technol 4:1–17. https://doi.org/10.1016/j.susmat.2015.05.002

    CAS  Article  Google Scholar 

  3. Basner M, Babisch W, Davis A, Brink M, Clark C, Janssen S, Stansfeld S (2014) Auditory and non-auditory effects of noise on health. Lancet 383(9925):1325–1332. https://doi.org/10.1016/s0140-6736(13)61613-x

    Article  Google Scholar 

  4. Berardi U, Iannace G (2015) Acoustic characterization of natural fibers for sound absorption applications. Build Environ 94:840–852

    Article  Google Scholar 

  5. Berardi U, Iannace G (2017) Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl Acoust 115:131–138. https://doi.org/10.1016/j.apacoust.2016.08.012

    Article  Google Scholar 

  6. Berbiche A, Sadouki M, Fellah ZEA, Ogam E, Fellah M, Mitri FG, Depollier C (2016) Experimental determination of the viscous flow permeability of porous materials by measuring reflected low frequency acoustic waves. J Appl Phys 119(1):014906

    Article  Google Scholar 

  7. Boulos L, Foruzanmehr MR, Tagnit-Hamou A, Elkoun S, Robert M (2017) Wetting analysis and surface characterization of flax fibers modified with zirconia by sol-gel method. Surf Coat Technol 313:407–416. https://doi.org/10.1016/j.surfcoat.2017.02.008

    CAS  Article  Google Scholar 

  8. Chen C, Zhang Y, Sun G, Wang J, Wang G (2016) Windmill palm fiber/polyvinyl alcohol coated nonwoven mats with sound absorption characteristics. BioResources 11(2):4212–4225

    CAS  Google Scholar 

  9. da Silva CCB, Terashima FJH, Barbieri N, de Lima KF (2019) Sound absorption coefficient assessment of sisal, coconut husk and sugar cane fibers for low frequencies based on three different methods. Appl Acoust 156:92–100. https://doi.org/10.1016/j.apacoust.2019.07.001

    Article  Google Scholar 

  10. Delany ME, Bazley EN (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3(2):105–116

    Article  Google Scholar 

  11. Dunn IP, Davern WA (1986) Calculation of acoustic impedance of multi-layer absorbers. Appl Acoust 19(5):321–334

    Article  Google Scholar 

  12. Dunne R, Desai D, Sadiku R (2017) A review of the factors that influence sound absorption and the available empirical models for fibrous materials. Acoust Aust 45(2):453–469. https://doi.org/10.1007/s40857-017-0097-4

    Article  Google Scholar 

  13. Fouladi MH, Ayub M, Nor MJM (2011) Analysis of coir fiber acoustical characteristics. Appl Acoust 72(1):35–42

    Article  Google Scholar 

  14. Garai M, Pompoli F (2005) A simple empirical model of polyester fiber materials for acoustical applications. Appl Acoust 66(12):1383–1398

    Article  Google Scholar 

  15. Goines L, Hagler L (2007) Noise pollution: a modem plague. South Med J 100(3):287–294

    Article  Google Scholar 

  16. Iannace G, Ciaburro G, Trematerra A (2020) Modelling sound absorption properties of broom fibers using artificial neural networks. Appl Acoust 163:107239

    Article  Google Scholar 

  17. Jiménez N, Romero-García V, Groby J-P (2018) Perfect absorption of sound by rigidly-backed high-porous materials. Acta Acust Unit Acust 104(3):396–409

    Article  Google Scholar 

  18. Khankhaje E, Salim MR, Mirza J, Hussin MW, Khan R, Rafieizonooz M (2017) Properties of quiet pervious concrete containing oil palm kernel shell and cockleshell. Appl Acoust 122:113–120

    Article  Google Scholar 

  19. Koizumi T, Tsujiuchi N, Adachi A (2002) The development of sound absorbing materials using natural bamboo fibres. In: Brebbia CA, De Wilde WP (eds) High performance structures and composites 4. High performance structures and materials. Witpress, pp 157–166

  20. Komatsu T (2008) Improvement of the Delany–Bazley and Miki models for fibrous sound-absorbing materials. Acoust Sci Technol 29(2):121–129

    Article  Google Scholar 

  21. Liu W, Guo Z, Niu S, Hou J, Zhang F, He C (2020) Mechanical properties and damage evolution behavior of coal–fired slag concrete under uniaxial compression based on acoustic emission monitoring technology. J Mater Res Technol 9(5):9537–9549. https://doi.org/10.1016/j.jmrt.2020.06.071

    Article  Google Scholar 

  22. Maasoumi R, Mokarami H, Nazifi M, Stallones L, Taban A, Aval MY, Samimi K (2017) Psychometric properties of the Persian translation of the Sexual Quality of Life—Male questionnaire. Am J Men’s Health 11(3):564–572

    Article  Google Scholar 

  23. Malawade UA, Jadhav MG (2020) Investigation of the acoustic performance of bagasse. J Mater Res Technol 9(1):882–889. https://doi.org/10.1016/j.jmrt.2019.11.028

    Article  Google Scholar 

  24. Mamtaz H, Fouladi MH, Al-Atabi M, Narayana Namasivayam S (2016) Acoustic absorption of natural fiber composites. J Eng. 2016:1–11

    Article  Google Scholar 

  25. Miki Y (1990) Acoustical properties of porous materials-Modifications of Delany–Bazley models. J Acoust Soc Jpn 11(1):19–24

    Article  Google Scholar 

  26. Nelson DI, Nelson RY, Concha-Barrientos M, Fingerhut M (2005) The global burden of occupational noise-induced hearing loss. Am J Ind Med 48(6):446–458

    Article  Google Scholar 

  27. Or KH, Putra A, Selamat MZ (2017) Oil palm empty fruit bunch fibers as sustainable acoustic absorber. Appl Acoust 119:9–16. https://doi.org/10.1016/j.apacoust.2016.12.002

    Article  Google Scholar 

  28. Othmani C, Taktak M, Zein A, Hentati T, Elnady T, Fakhfakh T, Haddar M (2016) Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material. Appl Acoust 109:90–96

    Article  Google Scholar 

  29. Paiva KM, Cardoso MRA, Zannin PHT (2019) Exposure to road traffic noise: annoyance, perception and associated factors among Brazil’s adult population. Sci Total Environ 650:978–986. https://doi.org/10.1016/j.scitotenv.2018.09.041

    CAS  Article  Google Scholar 

  30. Picard M, Girard SA, Simard M, Larocque R, Leroux T, Turcotte F (2008) Association of work-related accidents with noise exposure in the workplace and noise-induced hearing loss based on the experience of some 240,000 person-years of observation. Accid Anal Prev 40(5):1644–1652

    Article  Google Scholar 

  31. Putra A, Or KH, Selamat MZ, Nor MJM, Hassan MH, Prasetiyo I (2018) Sound absorption of extracted pineapple-leaf fibers. Appl Acoust 136:9–15

    Article  Google Scholar 

  32. Qunli W (1988) Empirical relations between acoustical properties and flow resistivity of porous plastic open-cell foam. Appl Acoust 25(3):141–148

    Article  Google Scholar 

  33. Ramis J, Alba J, del Rey R, Escuder E, Sanchís VJ (2010) New absorbent material acoustic based on kenaf’s fiber. Mater Constr 60(299):133–143. https://doi.org/10.3989/mc.2010.50809

    Article  Google Scholar 

  34. Santoni A, Bonfiglio P, Fausti P, Marescotti C, Mazzanti V, Mollica F, Pompoli F (2019) Improving the sound absorption performance of sustainable thermal insulation materials: natural hemp fibers. Appl Acoust 150:279–289. https://doi.org/10.1016/j.apacoust.2019.02.022

    Article  Google Scholar 

  35. Seddeq HS, Aly NM, A. Marwa A, and M. H. Elshakankery. (2013) Investigation on sound absorption properties for recycled fibrous materials. J Ind Text 43(1):56–73. https://doi.org/10.1177/1528083712446956

    Article  Google Scholar 

  36. Soltani P, Taban E, Faridan M, Samaei SE, Amininasab S (2020) Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber. Appl Acoust 157:106999. https://doi.org/10.1016/j.apacoust.2019.106999

    Article  Google Scholar 

  37. Suvari F, Ulcay Y, Pourdeyhimi B (2016) Sound absorption analysis of thermally bonded high-loft nonwovens. Text Res J 86(8):837–847

    CAS  Article  Google Scholar 

  38. Taban E, Khavanin A, Faridan M, Samaei SE, Samimi K, Rashidi R (2020) Comparison of acoustic absorption characteristics of coir and date palm fibers: experimental and analytical study of green composites. Int J Environ Sci Technol 17(1):39–48. https://doi.org/10.1007/s13762-019-02304-8

    Article  Google Scholar 

  39. Taban E, Khavanin A, Jafari AJ, Faridan M, Tabrizi AK (2019) Experimental and mathematical survey of sound absorption performance of date palm fibers. Heliyon 5(6):e01977. https://doi.org/10.1016/j.heliyon.2019.e01977

    Article  Google Scholar 

  40. Taban E, Khavanin A, Ohadi A, Putra A, Jafari AJ, Faridan M, Soleimanian A (2019) Study on the acoustic characteristics of natural date palm fibers: experimental and theoretical approaches. Build Environ 161:106274. https://doi.org/10.1016/j.buildenv.2019.106274

    Article  Google Scholar 

  41. Taban E, Mirzaei R, Faridan M, Samaei E, Salimi F, Tajpoor A, Ghalenoei M (2020) Morphological, acoustical, mechanical and thermal properties of sustainable green Yucca (Y. gloriosa) fibers: an exploratory investigation. J Environ Health Sci Eng. https://doi.org/10.1007/s40201-020-00513-9

    Article  Google Scholar 

  42. Taban E, Mortazavi SB, Vosoughi S, Khavanin A, Mahabadi HA (2017) Noise exposure effects on blood glucose, cortisol and weight changes in the male mice. Health Scope 6(2):e36108. https://doi.org/10.5812/jhealthscope.36108

    Article  Google Scholar 

  43. Taban E, Soltani P, Berardi U, Putra A, Mousavi SM, Faridan M, Samaei SE, Khavanin A (2020) Measurement, modeling, and optimization of sound absorption performance of Kenaf fibers for building applications. Build Environ 180:107087. https://doi.org/10.1016/j.buildenv.2020.107087

    Article  Google Scholar 

  44. Taban E, Tajpoor A, Faridan M, Samaei SE, Beheshti MH (2019) Acoustic absorption characterization and prediction of natural coir fibers. Acoust Aust 47(1):67–77

    Article  Google Scholar 

  45. Tang X, Yan X (2017) Acoustic energy absorption properties of fibrous materials: a review. Compos Part A: Appl Sci Manuf 101:360–380. https://doi.org/10.1016/j.compositesa.2017.07.002

    CAS  Article  Google Scholar 

  46. Tang X, Zhang X, Zhang H, Zhuang X, Yan X (2018) Corn husk for noise reduction: robust acoustic absorption and reduced thickness. Appl Acoust 134:60–68

    Article  Google Scholar 

  47. Yang T, Xiong X, Mishra R, Novák J, Militký J (2018) Acoustic evaluation of Struto nonwovens and their relationship with thermal properties. Text Res J 88(4):426–437

    CAS  Article  Google Scholar 

  48. Yuan M, Yin C, Sun Y, Chen W (2019) Examining the associations between urban built environment and noise pollution in high-density high-rise urban areas: a case study in Wuhan, China. Sustain Cities Soc 50:101678. https://doi.org/10.1016/j.scs.2019.101678

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Baqiyatallah university of medical sciences University for providing the necessary laboratory facilities for this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Valipour.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Editorial responsibility: Parveen Fatemeh Rupani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taban, E., Valipour, F., Abdi, D.D. et al. Mathematical and experimental investigation of sound absorption behavior of sustainable kenaf fiber at low frequency. Int. J. Environ. Sci. Technol. (2020). https://doi.org/10.1007/s13762-020-03024-0

Download citation

Keywords

  • Kenaf fiber
  • Waste recycling
  • Sound absorption coefficient
  • Empirical model
  • Best-fit inverse