Skip to main content
Log in

Investigating of primary components and source apportionment of persistent organic pollutants of indoor dust

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A number of studies have pointed out the occurrence of persistent organic pollutants (POPs) in indoor dust from different commercial and residential settings, but limited studies exist on the apportionment of their potential sources. This study aims to determine the levels and apportion of possible sources of 14 polybrominated diphenyl ethers (PBDEs) and also 16 polycyclic aromatic hydrocarbons (PAHs) which are the most abundant POPs found in indoor dusts. A total of 90 indoor dust samples were collected from the homes located in different districts of Kocaeli, Turkey, between February and April, 2016. The total concentrations of PBDEs (Σ14PBDEs) were measured in the range of 11.74 ng g−1 and 2484 ng g−1 with a median value of 207.4 ng g−1, while the concentration of Σ16PAHs was between 21.6 and 11274 ng g−1, and the median value was 927.6 ng g−1. Possible sources of PAHs and PBDEs indoors were extracted with the EPA Positive Matrix Factorization 5 model and identified with the information gathered from both the applied questionnaires and literature. Coal/biomass combustion was found to be highest contributor to measured PAHs while the emission of commercial penta-BDE was the main source of PBDEs indoor dust in Kocaeli. The findings from this study obviously indicate the mitigation of these main sources can be effective in improving the indoor air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abafe OA, Martincigh BS (2015) Polybrominated diphenyl ethers and polychlorinated biphenyls in indoor dust in Durban, South Africa. Indoor Air. https://doi.org/10.1111/12168

    Article  Google Scholar 

  • Abbasi G, Saini A, Goosey E, Diamond ML (2016) Product screening for sources of halogenated flame retardants in Canadian House and Office Dust. Sci Total Environ 545–546:299–307

    Google Scholar 

  • Adgate JL, Willis RD, Buckley TJ, Chow JC, Watson JG, Rhoads GG (1998) Chemical mass balance source apportionment of lead in house dust. Environ Sci Technol 32:108–114

    CAS  Google Scholar 

  • Ali N, Ali L, Mehdi T, Dirtu AC, Al-Shammari F, Neels H, Covaci A (2013) Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: implication for human exposure via dust ingestion. Environ Int 55:62–70

    CAS  Google Scholar 

  • Ali N, Covaci A, Goosey E, Harrad S, Neels H (2011) ‘”‘Novel’’ brominated flame retardants in Belgian and UK İndoor Dust: ımplications for human exposure. Chemosphere 10:1360–1365

    Google Scholar 

  • Ali N, Ismail IMI, Khoder M, Shamy M, Alghamdi M, Costa M, Ali LN, Wang W, Eqani S (2016) Polycyclic aromatic hydrocarbons(PAHs) in indoor dust samples from Cities of Jeddah and Kuwait: levels, sources and non-dietary human exposure. Sci Total Environ 573:1607–1614

    CAS  Google Scholar 

  • Allen JG, McClean MD, Stapleton HM, Webster TF (2008) Critical factors in assessing exposure to PBDEs via house dust. Environ Int 8:1085–1091

    Google Scholar 

  • Al-Omran LS, Harrad S (2017) Influence of sampling approach on concentrations of legacy and novel brominated flame retardants in indoor dust. Chemosphere 178:51–58. https://doi.org/10.1016/j.chemosphere.2017.02.096

    Article  CAS  Google Scholar 

  • Aydin YM, Dumanoglu Y, Elbir T, Kara M, Odabasi M (2014) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in ambient air of an industrial region in Turkey. Atmos Environ 97:271–285

    CAS  Google Scholar 

  • Balakrishna G, Pervez S, Bisht DS (2011) Source apportionment of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India. Atmos Chem Phys 11:5141–5151

    CAS  Google Scholar 

  • Barraza F, Jorquera H, Valdivia G, Montoya LD (2014) Indoor PM2.5 in Santiago, Chile, Spring 2012: source apportionment and outdoor contributions. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2014.06.014

    Article  Google Scholar 

  • Bennett H, Moran RE, Wu X, Tulve NS, Clifton MS, Colon M, Weathers W, Sjödin A, Jones R, Hertz-Picciotto I (2015) Polybrominated diphenyl ether (PBDE) concentrations and resulting exposure in homes in California: relationships among passive air, surface wipe and dust concentrations, and temporal variability. Indoor Air 25:220–229

    CAS  Google Scholar 

  • Besis A, Katsoyiannis A, Botsaropoulou E, Samara C (2014) Concentrations of polybrominated diphenyl ethers(PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece. Environ Pollut 188:64–70

    CAS  Google Scholar 

  • Besis A, Samara C (2012) Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments: a review on occurrence and human exposure. Environ Pollut 169:217–229

    CAS  Google Scholar 

  • Boström CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002). Cancer risk assessment, ındicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110/3

  • BSEF (2003) Major brominated flame retardants volume estimate. Total market demand by region in 2001. Bromine Science and Environmental Forum, Brussels, Belgium. http://www.bsef-site.com/bromine/our_industry/

  • Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chem 58(1–2):85–97

    CAS  Google Scholar 

  • Butte W, Heinzow B (2002) Pollutants in house dust as indicators of indoor contamination. Rev Environ Contam Toxicol 175:1–46

    CAS  Google Scholar 

  • Canbaz D, Van Velzen MJM, Hallner E, Zwinderman AH, Wickman M, Leonards PEG, van Ree R, Van Rijt LS (2015) Exposure to organophosphate and polybrominated diphenyl ether flame retardants via ındoor dust and childhood asthma. Indoor Air. https://doi.org/10.1111/ina.12221

    Article  Google Scholar 

  • Cao ZG, Xu FC, Covaci A, Wu M, Wang HZ, Yu G, Wang B, Deng SB, Huang J, Wang XY (2014) Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environ Sci Technol 15:8839–8846

    Google Scholar 

  • Castro D, Slezakova K, Delerue-Matos C, Alvim-Ferraz MC, Morais S, Pereira MC (2011) Contribution of traffic and tobacco smoke in the distribution of polycyclic aromatic hydrocarbons on outdoor and indoor PM2.5. Global NEST J 1:3–11

    Google Scholar 

  • Cequier E, Ionas AC, Covaci A, Marcé RM, Becher G, Thomsen C (2014) Occurrence of a broad range of legacy and emerging flame retardants in ındoor environments in Norway. Environ Sci Technol 12:6827–6835

    Google Scholar 

  • Cetin B (2014) Soil concentrations and source apportionment of polybrominated diphenyl ethers (PBDEs) and trace elements around a heavily industrialized area in Kocaeli, Turkey. Environ Sci Pollut Res 21:8284–8293

    CAS  Google Scholar 

  • Cetin B, Odabasi M (2007) Particle-phase dry deposition and air_soil gasexchange of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey. Environ Sci Technol 41:4986–4992

    CAS  Google Scholar 

  • Cetin B, Odabasi M, Bayram A (2016) Wet deposition of persistent organic pollutants (POPs) in Izmir, Turkey. Environ Sci Pollut Res 9:6183–6186

    Google Scholar 

  • Chao HR, Chun-Wen L, Ding-Yan L, Huei-Lin H, Kuan-Chung C, Yan-You G, Yi-Chyun H (2014) Impact of brominated POPs on the neurodevelopment and thyroid hormones of young children in an ındoor environment: a review. Aerosol Air Qual Res 14:1320–1332

    CAS  Google Scholar 

  • Chen SJ, Ding N, Zhu ZC, Tian M, JunLuo X, Mai B (2014) Sources of halogenated brominated retardants in house dust in an Industrial City in Southern China and associated human exposure. Environ Res 135:190–195

    CAS  Google Scholar 

  • Christopoulou OD, Sakkas VA, Albanis TA (2012) Evaluation of matrix solid-phase dispersion extraction for the determination of polycyclic aromatic hydrocarbons in household dust with the aid of experimental design and response surface methodology. J Sep Sci 24:3554–3560

    Google Scholar 

  • Civan MY, Kara M (2016) Risk assessment of PBDEs and PAHs in house dust in Kocaeli, Turkey: levels and sources. Environ Sci Pollut Res 23:23369–23384. https://doi.org/10.1007/s11356-016-7512-5

    Article  CAS  Google Scholar 

  • DellaValle CT, Wheeler DC, Deziel NC, De Roos AJ, Cerhan JR, Cozen W, Severson RK, Flory AR, Locke SJ, Colt JS, Hartge P, Ward MH (2013) Environmental determinants of polychlorinated biphenyl concentrations in residential carpet dust. Environ Sci Technol 47(18):10405–10414

    CAS  Google Scholar 

  • Devi NL, Yadav IC, Raha P, Yang S, Zhang G (2016) Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 144:493–502

    CAS  Google Scholar 

  • Dimashki M, Lim LH, Harrison RM, Harrad S (2001) Temporal trends, temperature dependence, and relative reactivity of atmospheric polycyclic aromatichydrocarbons. Environ Sci Technol 11:2264–2267

    Google Scholar 

  • Dumanoglu Y, Gaga EO, Gungormus E, Sofuoglu SC, Odabasi M (2017) Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants. Sci Total Environ 580:920–935

    CAS  Google Scholar 

  • Eriksson J, Green N, Marsh G, Bergman A (2004) Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water. Environ Sci Technol 11:3119–3125

    Google Scholar 

  • Esen F, Kayikci G (2018) Polycyclic aromatic hydrocarbons in indoor and outdoor air in Turkey: estimations of sources and exposure, environ. Forensics 19(1):39–49. https://doi.org/10.1080/15275922.2017.1408162

    Article  CAS  Google Scholar 

  • Fisk WR (2018) How home ventilation rates affect health: a literature review. Indoor Air. https://doi.org/10.1111/ina.12469

    Article  Google Scholar 

  • Fromme H, Hilger B, Kopp E, Miserok M, Volkel W (2014) Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and “novel” brominated flame retardants in house dust in Germany. Environ Int 64:61–68

    CAS  Google Scholar 

  • Fromme H, Lahrz T, Piloty M, Gebhardt H, Oddoy A, Ruden H (2004) Polycyclic aromatic hydrocarbons inside and outside of apartments in an urban area. Sci Total Environ 1–3:143–149

    Google Scholar 

  • Gao B, Wang XM, Zhao XY, Ding X, Fu XX, Zhang YL (2015) Source apportionment of atmospheric PAHs and their toxicity using PMF: ımpact of gas/particle partitioning. Atmos Environ 103:114–120

    CAS  Google Scholar 

  • Genisoglu M, Sofuoglu A, Kurt-Karakus PB, Birgul A, Sofuoglu SC (2019) Brominated flame retardants in a computer technical service: indoor air gas phase, submicron (PM1) and coarse (PM10) particles, associated inhalation exposure, and settled dust. Chemosphere 231:216–224

    CAS  Google Scholar 

  • Harrad S, Ibarra C, Abdallah ME, Boon R, Neels H, Covaci A (2008) Concentrations of brominated flame retardants in dust from United Kingdom cars, homes, and offices: causes of variability and implications for human exposure. Environ Int 8:1170–1175. https://doi.org/10.1016/j.envint.2008.05.001

    Article  CAS  Google Scholar 

  • Hassan Y, Shoeib T (2015) Levels of polybrominated diphenyl ethers and novel flame retardants in microenvironment dust from Egypt: an assessment of human exposure. Sci Total Environ 505:47–55

    CAS  Google Scholar 

  • Hopke PK (2003) Recent developments in receptor modeling. J Chemom 17:255–265

    CAS  Google Scholar 

  • Hopke PK, Cohen DD (2011) Application of receptor modeling methods. Atmos Pollut Res 2:122–125. https://doi.org/10.5094/APR.2011.016

    Article  Google Scholar 

  • Iwegbue C, Iteku‑Atata EOC, Odali EW, Egobueze FE, Tesi GO, Nwajei GE, Martincigh BS (2019) Distribution, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in household dusts from rural, semi‑urban and urban areas in the Niger Delta, Nigeria. Exposure and Health 1–17

  • Kadi MW, Ali N, Albar HMSA (2018) Phthalates and polycyclic aromatic hydrocarbons(PAHs) in the indoor settled carpet dust of mosques, health risk assessment for public. Sci Total Environ 627:134–140

    CAS  Google Scholar 

  • Kajiwara N, Noma Y, Takigami H (2008) Photolysis studies of technical decabromodiphenyl Ether(DecaBDE) and Ethane(DeBDethane) in plastics under natural sunlight. Environ Sci Technol 12:4404–4409

    Google Scholar 

  • Kamal A, Malik RN, Martellini T, Cincinelli A (2014) Cancer risk evaluation of brick kiln workers exposed to dust bound PAHs in Punjab province (Pakistan). Sci Total Environ 493:562–570

    CAS  Google Scholar 

  • Kang Y, Cheung KC, Wong MH (2011) Mutagenicity, genotoxicity and carcinogenic risk assessment of indoor dust from three major cities around the Pearl River Delta. Environ Int 3:637–643

    Google Scholar 

  • Karaca G (2016) Spatial distribution of polycyclic aromatic hydrocarbon (PAH) concentrations in soils from Bursa, Turkey. Arch Environ Contam Toxicol 70:406–417

    CAS  Google Scholar 

  • Karaca G, Tasdemir Y (2014) Temporal and spatial variations in PAH concentrations in the sediment from the Nilufer Creek in Bursa, Turkey. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:900–912

    CAS  Google Scholar 

  • Kefeni KK, Okonkwo JO, Botha BM (2014) Concentrations of polybromobiphenyls and polybromodiphenyl ethers in home dust: relevance to socio-economic status and human exposure rate. Sci Total Environ 470–47:1250–1256. https://doi.org/10.1016/j.scitotenv.2013.10.078

    Article  CAS  Google Scholar 

  • Kemmlein S, Herzke D, Law RJ (2009) Brominated flame retardants in the European chemicals policy of REACH-regulation and determination in materials. J Chromatogr A 3:320–333

    Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline-engines, highway tunnels, and wood combustion emissions. Atmos Environ 4:533–542

    Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2003) Source ıdentification of atlanta aerosol by positive matrix factorization. J Air Waste Manag Assoc 6:731–739

    Google Scholar 

  • Krol S, Zabiegala B, Namiesnik J (2012) Review: PBDEs in environmental samples: sampling and analysis. Talanta 93:1–17

    CAS  Google Scholar 

  • Kurada B (2015) Investigation of PAH contaminant level in indoor environments, Hacettepe University, Environmental Enginnering, Ms Thesis, Ankara, Turkey

  • Kurt-Karakus PB, Alegria H, Jantunen L, Birgul A, Topcu A, Jones KC, Turgut C (2017) Polybrominated diphenyl ethers (PBDEs) and alternative fame retardants (NFRs) in indoor and outdoor air and indoor dust from Istanbul-Turkey: levels and an assessment of human exposure. Atmos Pollut Res 5:801–815

    Google Scholar 

  • Kurt-Karakus PB, Ugranli-Cicek T, Sofuoglu SC, Celik H, Gungormus E, Gedik K, Sofuoglu A, Okten HE, Birgul A, Alegria H, Jones KC (2018) The first countrywide monitoring of selected POPs: polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and selected organochlorine pesticides (OCPs) in the atmosphere of Turkey. Atmos Environ 177:154–165

    CAS  Google Scholar 

  • La Guardia MJ, Hale RC, Harvey E (2006) Detailed polybrominated diphenyl ether(PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environ Sci Technol 20:6247–6254

    Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881

    CAS  Google Scholar 

  • Law RJ, Alaee M, Allchin CR, Boon JP, Lebeuf M, Lepom P, Stern GA (2003) Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife. Environ Int 6:757–770

    Google Scholar 

  • Lee SJ, Ikonomou MG, Park H, Baek SY, Chang YS (2007) Polybrominated diphenyl ethers in blood from Korean incinerator workers and general population. Chemosphere 3:489–497

    Google Scholar 

  • Li W, Peng Y, Shi J, Qiu W, Wang J, Bai Z (2011) Particulate polycyclic aromatic hydrocarbons in the urban Northeast Region of China: profiles, distributions and sources. Atmos Environ 45:7664–7671

    CAS  Google Scholar 

  • Liakakou E, Stavroulas I, Kaskaoutis DG, Grivas G, Paraskevopoulou D, Dumka UC, Tsagkaraki M, Bougiatioti A, Oikonomou K, Sciare J, Gerasopoulos E, Mihalopoulos E (2020) Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmos Environ 222:117–137

    Google Scholar 

  • Lu H, Zhu L (2007) Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. J Hazard Mater 139(2):193–198

    CAS  Google Scholar 

  • Ma Y, Harrad S (2015) Review article: spatiotemporal analysis and human exposure assessment on polycyclic aromatic hydrocarbons in indoor air, settled house dust, and diet. Environ Int 84:7–16

    CAS  Google Scholar 

  • Maertens RM, Yang XF, Zhu JP, Gagne RW, Douglas GR, White PA (2008) Mutagenic and carcinogenic hazards of settled house dust I: polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ Sci Technol 5:1747–1753

    Google Scholar 

  • Mannino MR, Orecchio S (2008) Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: extraction, GC–MS analysis, distribution and source. Atmos Environ 8:1801–1817

    Google Scholar 

  • Mastral AM, López JM, Callén MS, García T, Murillo R, Navarro MV (2003) Spatial and temporal PAH concentrations in Zaragoza, Spain. Sci Total Environ 1–3:111–124

    Google Scholar 

  • Melymuk L, Bohlin-Nizzetto P, Vojta S, Kratk M, Kukucka P, Audy O, Pribylova P, Klanov J (2016) Distribution of legacy and emerging semi-volatile organic compounds in five indoor matrices in a residential environment. Chemosphere 153:179–186

    CAS  Google Scholar 

  • MEU (Republic of Turkey Ministry Ministry of Environment and Urban Planning) (2008) Regulation of building insulation. Ankara, Official Gazette No: 27019

  • Motelay-Massei A, Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B (2005) Using passive air samplers to assess urban-rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs, and organochlorine pesticides. Environ Sci Technol 15:5763–5773

    Google Scholar 

  • Niu D, Qiu Y, Li L, Zhou Y, Du X, Zhu Z, Chen L, Lin Z (2018) Occurrence of polybrominated diphenyl ethers in floor and elevated surface house dust from Shanghai, China. Environ Sci Pollut Res 18:18049–18058

    Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics 5:111–126

    Google Scholar 

  • Paloluoğlu C, Bayraktar H, Aktan M, Turalioglu FS, Gaga EE (2015) Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in an urban traffic site in Erzurum, Turkey. Stoch Environ Res Risk A 30:1223–1234

    Google Scholar 

  • Paraskevopoulou D, Liakakou E, Gerasopoulos E, Mihalopoulos N (2015) Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece. Sci Total Environ 527–528:165–178

    Google Scholar 

  • Polisar AV, Hopke PK, Poirot RL (2001) Atmospheric aerosol over Vermont: chemical composition and sources. Environ Sci Technol 35:4604–4621

    Google Scholar 

  • Prevedouros K, Brorström-Lundén E, Halsall CJ, Jones KC, Lee RGM, Sweetman AJ (2004) Seasonal and long-term trends in atmospheric PAH concentrations:evidence and implications. Environ Pollut 128:17–27

    CAS  Google Scholar 

  • Qi H, Li WL, Zhu NZ, Ma W, Liu LY, Zhang F, Li Y (2014) Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China. Sci Total Environ 491–492:100–107

    Google Scholar 

  • Ren Y, Cheng TT, Chen JM (2006) Polycyclic aromatic hydrocarbons in dust from computers: one possible indoor source of human exposure. Atmos Environ 40:6956–6965

    CAS  Google Scholar 

  • Rudel RA, Dodson RE, Perovich LJ, Morello-Frosch R, Camann DE, Zuniga MM, Yau AY, Just AC, Brody JG (2010) Semivolatile endocrinedisrupting compounds in paired indoor and outdoor air in two northern California communities. Environ Sci Technol 44:6583–6590

    CAS  Google Scholar 

  • Sadiktsis I, Bergvall C, Johansson C, Westerholm R (2012) Automobile tires-a potential source of highly carcinogenic dibenzopyrenes to the environment. Environ Sci Technol 6:3326–3334

    Google Scholar 

  • Santillo D, Labunska I, Davidson H, Johnston P, Strutt M, Knowles O (2003) Consuming chemicals: hazardous chemicals in house dust as an ındicator of chemical exposure in the home. 2003. Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter, Exeter, UK

  • Shen M, Liu G, Yin H, Zhou L (2020) Distribution, sources and health risk of PAHs in urban air-conditioning dust. Ecotoxicol Environ Saf 194:110442

    CAS  Google Scholar 

  • Shoeib M, Harner T, Webster GM, Sverko E, Cheng Y (2012) Legacy and current-use flame retardants in house dust from Vancouver, Canada. Environ Pol 169:175–182

    CAS  Google Scholar 

  • Slezakova K, Castro D, Pereira MC, Morais S, Delerue-Matos C, Alvim Ferraz MC (2009) Influence of tobacco smoke on carcinogenic PAH composition in indoor PM10 and PM2.5. Atmos Environ 40:6376–6382

    Google Scholar 

  • Söderström G, Sellström U, De Wit CA, Tysklind M (2004) Photolytic debromination of decabromodiphenyl ether(BDE 209). Environ Sci Technol 1:127–132

    Google Scholar 

  • Song Y, Zhang Y, Xie S, Zeng L, Zheng M, Salmon LG et al (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40:1526–1537

    CAS  Google Scholar 

  • Stapleton HM, Dodder NG (2008) Photodegradation of decabromodiphenyl ether in house dust by natural sunlight. Environ Toxicol Chem 2:306–312

    Google Scholar 

  • Suryawanshi S, Chauhan AS, Verma R, Gupta T (2016) Identification and quantification of indoor air pollutant sources within a residential academic campus. Sci Total Environ 569:46–52

    Google Scholar 

  • Tay JH, Sellström U, Papadopoulou E, Padilla-Sánchez JA, Haug LS, DeWit CA (2017) Human exposure to legacy and emerging halogenat-ed flame retardants via inhalation and dust ingestion in a Norwegian cohort. Environ Sci Technol 14:8176–8184

    Google Scholar 

  • Tolosa J, Bayona JM, Albaigs J (1996) Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in north-western Mediterranean sediments: spatial and temporal variability, fluxes, and budgets. Environ Sci Technol 8:2495–2503

    Google Scholar 

  • Tuncel SG, Topal T (2015) Polycyclic aromatic hydrocarbons (PAHs) in sea sediments of the Turkish Mediterranean coast, composition and sources. Environ Sci Pollut Res Int 22(6):4213–4221. https://doi.org/10.1007/s11356-014-3621-

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1993) Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EPA/600/R-93/089, Washington, DC 20460

  • U.S. Environmental Protection Agency (USEPA) (2008) Polycyclic aromatic hydrocarbons(PAHs), United States Office of Solid Waste United States Environmental Protection Agency, Washington, DC, 20460

  • UNEP/POPS/COP.4/17 (2009) Recommendations of the persistent organic pollutants review committee of the Stockholm convention to amend annexes A, B or C of the convention. Stockholm Convention on Persistent Organic Pollutants, 4 Feb

  • Venier M, Audy O, Vojta S, Becanova J, Romanak K, Melymuk L, Kratka M, Kukucka P, Okeme J, Saini A (2016) Brominated flame retardants in the ındoor environment comparative study of ındoor contamination from three countries. Environ Int 94:150–160

    CAS  Google Scholar 

  • Vizcaino E, Grimalt JO, Lopez-Espinosa MJ, Llop S, Rebagliato M, Ballester F (2011) Polybromodiphenyl ethers in mothers and their newborns from a nonoccupationally exposed population(Valencia, Spain). Environ Int 1:152–157

    Google Scholar 

  • Wang DG, Tian FL, Yang M, Liu CL, Li YF (2009) Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China. Environ Pollut 157:1559–1564

    CAS  Google Scholar 

  • Wang W, Huang M, Kang Y, Wang H, Leung AOW, Cheung KC, Wong MH (2011) Polycyclic aromatic hydrocarbons(PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ 21:4519–4527

    Google Scholar 

  • Wang W, Wu F, Zheng J, Wong MH (2013) Risk assessments of PAHs and Hg exposure via settled house dust and street dust, linking with their correlations in human hair. J Hazard Mater 263:627–637

    CAS  Google Scholar 

  • Wang W, Zheng J, Chan CY, Huang M, Cheung KC, Wong MH (2014) Health risk assessment of exposure to polybrominated diphenyl ethers (PBDEs) contained in residential air particulate and dust in Guangzhou and Hong Kong. Atmos Environ 89:786–796

    CAS  Google Scholar 

  • Wang Y, Zhang Q, Zhang Y, Zhao H, Tan F, Wu X, Chen J (2019) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the air of Dalian, China: correlations with six criteria air pollutants and meteorological conditions. Chemosphere 216:516–523. https://doi.org/10.1016/j.chemosphere.2018.10.184

    Article  CAS  Google Scholar 

  • Wang Z, Wang S, Nie J, Wang Y, Liu Y (2017) Assessment of polycyclic aromatic hydrocarbons in indoor dust from varying categories of rooms in Changchun city, northeast China. Environ Geochem Health 39:15–27

    CAS  Google Scholar 

  • Wickramasinghe PA, Karunaratne PGGD, Sivakanesan R (2012) PM10-bound polycyclic aromatic hydrocarbons: biological indicators, lung cancer risk of realistic receptors and ‘source–exposure–effect relationship’ under different source scenarios. Chemosphere 87(11):1381–1387

    CAS  Google Scholar 

  • Wong A, Lei YD, Alaee M, Wania F (2001) Vapor pressures of the polybrominated diphenyl ethers. J Chem Eng Data 46:239–242

    CAS  Google Scholar 

  • World Health Organization (2018) Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Accessed Aug 2020

  • Wu MH, Pei JC, Zhieng M, Tang L, Bao Y, Xu BT, Sun R, Sun YS, Xu G, Lei JQ (2015) Polybrominated diphenyl ethers(PBDEs) in soil and outdoor dust from a multi-functional area of Shanghai: levels, compositional profiles and interrelationships. Chemosphere 1:87–95

    Google Scholar 

  • Xu J, Peng X, Guo CS, Xu J, Lin HX, Shi GL, Lv JP, Zhang Y, Feng YC, Tysklind M (2016) Sediment PAH source apportionment in the Liaohe River using the ME2 approach: a comparison to the PMF model. Sci Total Environ 553:164–171

    CAS  Google Scholar 

  • Yadav IC, Devi NL, Li J, Zhang G (2018) Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: ımplication on source apportionment and toxicological effect. Sci Total Environ 616–617:223–235

    Google Scholar 

  • Yang B, Zhou LL, Xue ND, Li FS, Li YW, Vogt RD, Cong X, Yan YZ, Liu B (2013a) Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai plain, China: comparison of three receptor models. Sci Total Environ 443:31–39

    CAS  Google Scholar 

  • Yang Q, Chen H, Li B (2015) Source ıdentification and health risk assessment of metals in ındoor dust in the vicinity of phosphorus mining, Guizhou Province, China. Arch Environ Contam Toxicol 68:20–30

    CAS  Google Scholar 

  • Yang Q, Qiu X, Li R, Liu S, Li K, Wang F, Zhu P, Li G, Zhu T (2013b) Exposure to typical persistent organic pollutants from an electronic waste recycling site in Northern China. Chemosphere 2:205–211

    CAS  Google Scholar 

  • Yang Q, Qiu X, Li R, Liu S, Li K, Wang F, Zhu P, Li G, Zhu T (2013c) Exposure to typical persistent organic pollutants from an electronic waste recycling site in Northern China. Chemosphere 91(2):205–211

    CAS  Google Scholar 

  • Yao Z, Li J, Wu B, Hao X, Yin Y, Jiang X (2015) Characteristics of PAHs from deep-frying and frying cooking fumes. Environ Sci Pollut Res Int 22(20):16110–16120. https://doi.org/10.1007/s11356-015-4837-4

    Article  CAS  Google Scholar 

  • Yunker MA, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 4:489–515

    Google Scholar 

  • Zhang J, Li RF, Zhang XY, Bai Y, Cao P, Hua P (2019) Vehicular contribution of PAHs in size dependent road dust: a source apportionment by PCA-MLR, PMF, and Unmix receptor models. Sci Total Environ 649:1314–1320

    CAS  Google Scholar 

  • Zhang X, Diamond ML, Robson M, Harrad S (2011) Sources, emissions, and fate of polybrominated diphenyl ethers and polychlorinated biphenyls ındoors in Toronto, Canada. Environ Sci Technol 8:3268–3274

    Google Scholar 

  • Zhong JM, Latif MT, Mohamad N, Wahid NBA, Dominick D, Juahir H (2014) Source apportionment of particulate matter (PM10) and Indoor Dust in a University Building. Environ Forensics 1:8–16

    Google Scholar 

  • Zhu N-J, Liu L-Y, Ma W-L, Li W-L, Song W-W, Qi H, Li Y-F (2015) Polybrominated diphenyl ethers (PBDEs) in the indoor dust in China: levels, spatial distribution and human exposure. Ecotoxicol Environ Safety 111:1–8

Download references

Acknowledgements

The study was financially supported by the project under Project No. 115Y405 obtained from the Scientific and Technological Research Council of Turkey (TUBITAK). The experiments were carried in GC–MS laboratory supported by Kocaeli University under Grant KOU-BAP-14/89 project. The authors are thankful to all volunteers who contributed to this work by lowing the sampling of their homes and answering the questionnaires. We are also grateful to Dr. Demet Arslanbaş, Tuğba Ayaz and Hepsen Bahar Akyıldız for their help during field sampling and laboratory experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yılmaz Civan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interset.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Kocaeli University in Kocaeli (Turkey) Clinical Research Ethics Committee on the 24th of February, 2015, with the approval reference number: KOU KAEK 2015/40 and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Editorial responsibility: Maryam Shabani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basaran, B., Yılmaz Civan, M. Investigating of primary components and source apportionment of persistent organic pollutants of indoor dust. Int. J. Environ. Sci. Technol. 18, 2145–2160 (2021). https://doi.org/10.1007/s13762-020-02973-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02973-w

Keywords

Navigation