Skip to main content

Advertisement

Log in

Evaluation of arsenic sorption performance using dendritic anatase and polycrystalline rutile nano-TiO2 for environmental applications

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Two synthetic nano-TiO2-based materials, aggregated dendritic anatase nano-TiO2 and polycrystalline rutile nano-TiO2 attached to the surface of SiO2, were analyzed and compared for geo-environmental engineering applications. Characterization of crystal structure, purity, and morphologic, microscopic features of the materials were examined by X-ray powder diffraction, X-ray fluorescence, and scanning electron microscope, respectively. Arsenic removal rates/efficiencies were compared between the two materials in different settings for laboratory batch experiment. The adsorption curve on arsenic was obtained. Subsequently, different concentrations of arsenic solutions were injected in batches at different flow rates 0.67, 0.83, 1.00, 1.25, 1.67, 2.50, 5.00, and 10.00 ml/min to simulate field conditions. Results show that both of TiO2-based materials demonstrate outstanding capabilities for arsenic removal. Removal rates are 83% (± 0.025) and 95% (± 0.024) for aggregated TiO2, while 82% (± 0.031) for 93% (± 0.013) for attached TiO2. Results suggest that attached form of TiO2 is more effective for arsenic removal under fast groundwater flow condition, while aggregated form TiO2 can be suitable for high arsenic concentration and low water flow rate. Both materials are considered cost-effective as both can be recovered and reused after regeneration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adamson AW, Gast AP (1967) Physical chemistry of surfaces. New York: Interscience publishers 150:180

  • Bang S, Patel M, Lippincott L, Meng X (2005) Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere 60(3):389–397

    CAS  Google Scholar 

  • Bang S, Pena ME, Patel M, Lippincott L, Meng X, Kim KW (2011) Removal of arsenate from water by adsorbents: a comparative case study. Environ Geochem Health 33(1):133–141

    CAS  Google Scholar 

  • Berg M, Luzi S, Trang PTK, Viet PH, Giger W, Stüben D (2006) Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits. Environ Sci Technol 40(17):5567–5573

    CAS  Google Scholar 

  • Bravo JL, Chirino H, Mao Y (2017) Heterostructured TiO2@ OC core@ shell photocatalysts for highly efficient waste water treatment. New J Chem 41(22):13600–13610

    CAS  Google Scholar 

  • Camacho LM, Gutiérrez M, Alarcón-Herrera MT, de Lourdes Villalba M, Deng S (2011) Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 83(3):211–225

    CAS  Google Scholar 

  • Cheng CL, Perfect E, Mills RT (2013) Forward prediction of height-averaged capillary pressure–saturation parameters using the BC-vG Upscaler. Vadose Zone J 12(3):1–9

    Google Scholar 

  • Cui J, Du J, Yu S, Jing C, Chan T (2015) Groundwater arsenic removal using granular TiO2: integrated laboratory and field study. Environ Sci Pollut Res 22(11):8224–8234

    CAS  Google Scholar 

  • Garcia E, Li Q, Sun X, Lozano K, Mao Y (2015) TiO2 fibers: tunable polymorphic phase transformation and electrochemical properties. J Nanosci Nanotechnol 15(5):3750–3756

    CAS  Google Scholar 

  • Das D, Samanta G, Mandal BK, Chowdhury TR, Chanda CR, Chowdhury PP, Basu GK, Chakraborti D (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ Geochem Health 18(1):5–15

    CAS  Google Scholar 

  • Ding Z, Zheng B, Long J, Belkin HE, Finkelman RB, Chen C, Zhou D, Zhou Y (2001) Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Appl Geochem 16(11–12):1353–1360

    CAS  Google Scholar 

  • Do DD (1998) Adsorption analysis: equilibria and kinetics, vol 2. Imperial College Press, London, pp 13–34

    Google Scholar 

  • Gleick PH (1993) Water and conflict: fresh water resources and international security. Int Secur 18(1):79–112

    Google Scholar 

  • Guan X, Du J, Meng X, Sun Y, Sun B, Hu Q (2012) Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 215:1–16

    Google Scholar 

  • Gunduz O, Simsek C, Hasozbek A (2010) Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water Air Soil Pollut 205(1–4):43

    CAS  Google Scholar 

  • Gupta SK, Chen KY (1978) Arsenic removal by adsorption. J (Water Pollut Control Fed) 50:493–506

    CAS  Google Scholar 

  • He G, Zhang M, Pan G (2009) Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: thermodynamic, DFT, and EXAFS interpretations. J Phys Chem C 113(52):21679–21686

    CAS  Google Scholar 

  • Hering JG, Chen PY, Wilkie JA, Elimelech M, Liang S (1996) Arsenic removal by ferric chloride. J Am Water Works Assoc 88(4):155–167

    CAS  Google Scholar 

  • Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2(7):745–758

    CAS  Google Scholar 

  • Indrakanti VP, Kubicki JD, Schobert HH (2011) Photoinduced activation of CO2 on TiO2 surfaces: quantum chemical modeling of CO2 adsorption on oxygen vacancies. Fuel Process Technol 92(4):805–811

    CAS  Google Scholar 

  • Jegadeesan G, Al-Abed SR, Sundaram V, Choi H, Scheckel KG, Dionysiou DD (2010) Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects. Water Res 44(3):965–973

    CAS  Google Scholar 

  • Jézéquel H, Chu KH (2005) Enhanced adsorption of arsenate on titanium dioxide using Ca and Mg ions. Environ Chem Lett 3(3):132–135

    Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298

    CAS  Google Scholar 

  • Karbassi A, Fakhraee M, Tajziehchi S, Shahriari T, Maddah S (2018) An efficient treatment system for arsenic removal from groundwater. Ambient Sci 5(2):1–5

    Google Scholar 

  • Kartinen EO Jr, Martin CJ (1995) An overview of arsenic removal processes. Desalination 103(1–2):79–88

    CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36(20):5141–5155

    CAS  Google Scholar 

  • Kim Y, Kim C, Choi I, Rengaraj S, Yi J (2004) Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Technol 38(3):924–931

    CAS  Google Scholar 

  • Leal JH, Cantu Y, Gonzalez DF, Parsons JG (2017) Brookite and anatase nanomaterial polymorphs of TiO2 synthesized from TiCl3. Inorg Chem Commun 84:28–32

    CAS  Google Scholar 

  • Ma L, Tu SX (2011) Removal of arsenic from aqueous solution by two types of nano TiO2 crystals. Environ Chem Lett 9(4):465–472

    CAS  Google Scholar 

  • Mao Y, Kanungo M, Hemraj-Benny T, Wong SS (2006) Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates. J Phys Chem B 110(2):702–710

    CAS  Google Scholar 

  • Mireles S, Parsons J, Trad T, Cheng CL, Kang J (2019) Lead removal from aqueous solutions using biochars derived from corn stover, orange peel, and pistachio shell. Int J Environ Sci Technol 16:5817–5826

    CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1–2):1–53

    CAS  Google Scholar 

  • National Research Council (1977) Medical and biologic effects of environmental pollutants, arsenic. National Academy of Sciences, Washington, p 219

    Google Scholar 

  • Nicolli HB, Suriano JM, Peral MAG, Ferpozzi LH, Baleani OA (1989) Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Córdoba, Argentina. Environ Geol Water Sci 14(1):3–16

    CAS  Google Scholar 

  • Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahmanñ M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395(6700):338

    CAS  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    CAS  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072

    CAS  Google Scholar 

  • Pena M, Meng X, Korfiatis GP, Jing C (2006) Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ Sci Technol 40(4):1257–1262

    CAS  Google Scholar 

  • Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39(11):2327–2337

    CAS  Google Scholar 

  • Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16(7):1247–1253

    CAS  Google Scholar 

  • Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci. Technol 43(12):4227–4233

    CAS  Google Scholar 

  • Rodríguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341(6148):866–868

    Google Scholar 

  • Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing K (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San Diego

    Google Scholar 

  • Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9(4):495–509

    CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    CAS  Google Scholar 

  • Sultana R, Kobayashi K (2016) Adsorption of arsenic on soil under different soil moisture conditions. Pollution 2(2):211–220

    Google Scholar 

  • Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J (Nat Sci) 42(5):357–361

    Google Scholar 

  • UNESCO (2018) United Nations World Water Assessment Programme, 2018. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water, pp 154

  • US EPA (2001) National primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring. Fed Reg 66:69–76

    Google Scholar 

  • Watts HD, Tribe L, Kubicki JD (2014) Arsenic adsorption onto minerals: connecting experimental observations with density functional theory calculations. Minerals 4(2):208–240

    Google Scholar 

  • WHO (1998) Guidelines for drinking-water quality. Vol. 2, Health criteria and other supporting information: addendum (No. WHO/EOS/98.1). World Health Organization, Geneva

  • Xu Z, Meng X (2009) Size effects of nanocrystalline TiO2 on As(V) and As(III) adsorption and As(III) photooxidation. J Hazard Mater 168(2–3):747–752

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge multiple graduate support provided by School of Earth, Environmental and Marine Sciences, the Science Technology and Engineering Partnership for Success (STEPS) Endowment from College of Science, and Graduate College of the University of Texas—Rio Grande Valley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Cheng, CL., Parsons, J. et al. Evaluation of arsenic sorption performance using dendritic anatase and polycrystalline rutile nano-TiO2 for environmental applications. Int. J. Environ. Sci. Technol. 18, 2113–2124 (2021). https://doi.org/10.1007/s13762-020-02963-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02963-y

Keywords

Navigation