Skip to main content

Advertisement

Log in

Effects of waterborne mercury at different temperatures on hematology and energy metabolism in grass carp (Ctenopharyngodon idella)

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Aquatic ecosystem is greatly affected by metal pollution and global climate change. Mercury (Hg) is one of the most common metal pollutants that pose harmful effects to organisms. In this study, we evaluated the effects of water temperature and Hg2+ on hematological parameters, such as red blood cells (RBCs), hematocrit (Ht) and hemoglobin (Hb) and some indexes involved in energy metabolism, including hexokinase (HK), pyruvate kinase (PK), malate dehydrogenase (MDH), lactate dehydrogenase (LDH), glucose (GLU), electron transport system (ETS) and Na–K-ATPase in grass carp, Ctenopharyngodon idella. Fish (45.37 ± 3.58 g) were acclimated to 15, 20, 25, 30 or 35 °C and co-exposed to 0.000 or 0.039 mg/L Hg2+ for 4 weeks. Three-way ANOVA revealed that all variables were significantly affected by water temperature, Hg2+ concentration, exposure time and their interactions, except the RBCs value corresponding Hg*Time condition. Based on the significant changes of hematological parameters in Hg2+-free groups, the best health status in fish was approximately at 25 °C, appreciating physiological dysregulation in fish under too low (15 °C)/high (35 °C) temperature, especially at 35 °C. Although our data provide evidences that increased temperatures can potentiate Hg2+ toxicity, the combined effects of temperature and metals on aquatic organisms are complex and unpredictable, so we should not ignore the role of environmental factors (such as temperature) while evaluating the harmful effects of metals on aquatic ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Tawwab M, Wafeek M (2014) Influence of water temperature and waterborne cadmium toxicity on growth performance and metallothionein-cadmium distribution in different organs of Nile tilapia, Oreochromis niloticus (L.). J Therm Biol 45:157–162

    CAS  Google Scholar 

  • Abdel-Tawwab M, Wafeek M (2017) Fluctuations in water temperature affected waterborne cadmium toxicity: hematology, anaerobic glucose pathway, and oxidative stress status of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 477:106–111

    CAS  Google Scholar 

  • Adhikari S, Sarkar B, Chatterjee A et al (2004) Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicol Environ Saf 58(2):220–226

    CAS  Google Scholar 

  • Agrahari S, Gopal K (2008) Inhibition of Na + -K + -ATPase in different tissues of freshwater fish Channa punctatus (Bloch) exposed to monocrotophos. Pestic Biochem Physiol 92(2):57–60

    CAS  Google Scholar 

  • Akhtar MS, Pal AK, Sahu NP et al (2013) Thermal tolerance, oxygen consumption and haemato-biochemical variables of Tor putitora juveniles acclimated to five temperatures. Fish Physiol Biochem 39(6):1387–1398

    CAS  Google Scholar 

  • Ando M, Seoka M, Mukai Y et al (2011) Effect of water temperature on the feeding activity and the resultant mercury levels in the muscle of cultured bluefin tuna Thunnus orientalis (Temminck and Schlegel). Aquacult Res 42(4):516–524

    Google Scholar 

  • Arnaudova D, Arnaudov A, Tomova E (2008) Selected hematological indices of freshwater fish from Studen Kladenetsh Reservoir. Bulg J Agric Sci 14(2):244–250

    Google Scholar 

  • Balbus JM, Boxall AB, Fenske RA et al (2013) Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ Toxicol Chem 32(1):62–78

    CAS  Google Scholar 

  • Berntssen MHG, Hylland K, Julshamn K et al (2004) Maximum limits of organic and inorganic mercury in fish feed. Aquacult Nutr 10(2):83–97

    CAS  Google Scholar 

  • Biscere T, Rodolfo-Metalpa R, Lorrain A et al (2015) Responses of two scleractinian corals to cobalt pollution and ocean acidification. PLoS ONE 10(4):e0122898

    Google Scholar 

  • Borges A, Scotti LV, Siqueira DR et al (2007) Changes in hematological and serum biochemical values in jundia Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 69(6):920–926

    CAS  Google Scholar 

  • Broeg K, Lehtonen KK (2006) Indices for the assessment of environmental pollution of the Baltic Sea coasts: integrated assessment of a multi-biomarker approach. Mar Pollut Bull 53(8–9):508–522

    CAS  Google Scholar 

  • Carvalho CS, Fernandes MN (2006) Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture 251(1):109–117

    CAS  Google Scholar 

  • Carvalho CD, Fernandes MN (2008) Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus. Comp Biochem Phys A 151(3):437–442

    Google Scholar 

  • Carvalho CD, Fernandes MN (2019) Effects of copper toxicity at different pH and temperatures on the in vitro enzyme activity in blood and liver of fish, Prochilodus lineatus. Mol Biol Rep 46(5):4933–4942

    Google Scholar 

  • Diamantino TC, Almeida E, Soares AMVM et al (2001) Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna straus. Chemosphere 45(4–5):553–560

    CAS  Google Scholar 

  • Fonseca JD, Marangoni LFD, Marques JA et al (2019) Energy metabolism enzymes inhibition by the combined effects of increasing temperature and copper exposure in the coral Mussismilia harttii. Chemosphere 236:124420

    Google Scholar 

  • Isani G, Cattani O, Carpene E et al (1994) Kinetic-properties of liver and muscle pyruvate-kinase of a marine teleost, sea bass (Dicentrarchus-Labrax L). Comp Biochem Phys B 107(4):617–624

    Google Scholar 

  • Kori-Siakpere O, Ubogu EO (2008) Sublethal haematological effects of zinc on the freshwater fish, Heteroclarias sp (Osteichthyes: Clariidae). Afr J Biotechnol 7(12):2068–2073

    CAS  Google Scholar 

  • Kumar N, Krishnani KK, Meena KK et al (2017) Oxidative and cellular metabolic stress of Oreochromis mossambicus as biomarkers indicators of trace element contaminants. Chemosphere 171:265–274

    CAS  Google Scholar 

  • Kumar N, Krishnani KK, Brahmane MP et al (2018) Temperature induces lead toxicity in Pangasius hypophthalmus: an acute test, antioxidative status and cellular metabolic stress. Int J Environ Sci Te 15(1):57–68

    CAS  Google Scholar 

  • Kumar N, Gupta SK, Bhushan S et al (2019) Impacts of acute toxicity of arsenic (III) alone and with high temperature on stress biomarkers, immunological status and cellular metabolism in fish. Aquat Toxicol 214:105233

    CAS  Google Scholar 

  • Kuz’mina VV, Ushakova NV (2013) Influence of temperature and pH on the effects of zinc and copper on proteolytic activities of the intestinal mucosa of planktivorous and benthophagous fishes and their potential preys. Toxicol Environ Chem 95(1):150–162

    Google Scholar 

  • Lee S, Ji K, Choi K (2014) Effects of water temperature on perchlorate toxicity to the thyroid and reproductive system of Oryzias latipes. Ecotoxicol Environ Saf 108:311–317

    CAS  Google Scholar 

  • Lermen CL, Lappe R, Crestani M et al (2004) Effect of different temperature regimes on metabolic and blood parameters of silver catfish Rhamdia quelen. Aquaculture 239(1–4):497–507

    CAS  Google Scholar 

  • Li ZH, Velisek J, Grabic R et al (2011a) Use of hematological and plasma biochemical parameters to assess the chronic effects of a fungicide propiconazole on a freshwater teleost. Chemosphere 83(4):572–578

    CAS  Google Scholar 

  • Li ZH, Zlabek V, Turek J et al (2011b) Evaluating environmental impact of STPs situated on streams in the Czech Republic: an integrated approach to biomonitoring the aquatic environment. Water Res 45(3):1403–1413

    CAS  Google Scholar 

  • Li ZH, Zlabek V, Velisek J et al (2011c) Antioxidant responses and plasma biochemical characteristics in the freshwater rainbow trout, Oncorhynchus mykiss, after acute exposure to the fungicide propiconazole. Czech J Anim Sci 56(2):61–69

    CAS  Google Scholar 

  • Li ZH, Chen L, Wu YH et al (2014) Effects of mercury on oxidative stress and gene expression of potential biomarkers in larvae of the Chinese rare minnow Gobiocypris Rarus. Arch Environ Contam Toxicol 67(2):245–251

    CAS  Google Scholar 

  • Li ZH, Li P, Shi ZC (2015) Chronic exposure to Tributyltin induces brain functional damage in juvenile common carp (Cyprinus carpio). PLoS ONE 10(4):e0123091

    Google Scholar 

  • Maulvault AL, Custodio A, Anacleto P et al (2016) Bioaccumulation and elimination of mercury in juvenile seabass (Dicentrarchus labrax) in a warmer environment. Environ Res 149:77–85

    CAS  Google Scholar 

  • Monteiro MD, Schwantes MLB, Schwantes AR et al (1998) Thermal stability of soluble malate dehydrogenase isozymes of subtropical fish belonging to the orders Characiformes, Siluriformes and Perciformes. Genet Mol Biol 21(2):191–199

    CAS  Google Scholar 

  • Navas-Acien A, Silbergeld EK, Streeter RA et al (2006) Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environ Health Perspect 114(5):641–648

    CAS  Google Scholar 

  • Oruc EO, Uner N, Tamer L (2002) Comparison of Na+-K+-ATPase activities and malondialdehyde contents in liver tissue for three fish species exposed to azinphosmethyl. Bull Environ Contam Toxicol 69(2):271–277

    Google Scholar 

  • Park K, Han EJ, Ahn G et al (2020) Effects of combined stressors to cadmium and high temperature on antioxidant defense, apoptotic cell death, and DNA methylation in zebrafish (Danio rerio) embryos. Sci Total Environ 716:137130

    CAS  Google Scholar 

  • Perveen S, Hashmi I, Khan R (2019) Evaluation of genotoxicity and hematological effects in common carp (Cyprinus carpio) induced by disinfection by-products. J Water Health 17(5):762–776

    Google Scholar 

  • Philippe C, Hautekiet P, Gregoir AF et al (2018) Combined effects of cadmium exposure and temperature on the annual killifish (Nothobranchius furzeri). Environ Toxicol Chem 37(9):2361–2371

    CAS  Google Scholar 

  • Sappal R, Fast M, Stevens D et al (2015a) Effects of copper, hypoxia and acute temperature shifts on mitochondrial oxidation in rainbow trout (Oncorhynchus mykiss) acclimated to warm temperature. Aquat Toxicol 169:46–57

    CAS  Google Scholar 

  • Sappal R, MacDougald M, Fast M et al (2015b) Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 165:51–63

    CAS  Google Scholar 

  • Sappal R, Fast M, Purcell S et al (2016) Copper and hypoxia modulate transcriptional and mitochondrial functional-biochemical responses in warm acclimated rainbow trout (Oncorhynchus mykiss). Environ Pollut 211:291–306

    CAS  Google Scholar 

  • Simcic T, Jesensek D, Brancelj A (2015) Effects of increased temperature on metabolic activity and oxidative stress in the first life stages of marble trout (Salmo marmoratus). Fish Physiol Biochem 41(4):1005–1014

    CAS  Google Scholar 

  • Sokolova IM, Lannig G (2008) Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim Res 37(2–3):181–201

    Google Scholar 

  • Stackley KD, Beeson CC, Rahn JJ et al (2011) Bioenergetic profiling of zebrafish embryonic development. PLoS ONE 6(9):e25652

    CAS  Google Scholar 

  • Staurnes M, Rainuzzo JR, Sigholt T et al (1994) Acclimation of atlantic cod (Gadus-Morhua) to cold-water—stress-response, osmoregulation, gill lipid-composition and gill Na-K-atpase activity. Comp Biochem Phys A 109(2):413–421

    Google Scholar 

  • Sumner AW, Johnston TA, Lescord GL et al (2019) Mercury bioaccumulation in lacustrine fish populations along a climatic gradient in northern ontario, Canada. Ecosystems. https://doi.org/10.1007/s10021-019-00464-9

    Article  Google Scholar 

  • Talas ZS, Gulhan MF (2009) Effects of various propolis concentrations on biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 72(7):1994–1998

    CAS  Google Scholar 

  • Val J, Muniz S, Goma J et al (2016) Influence of global change-related impacts on the mercury toxicity of freshwater algal communities. Sci Total Environ 540:53–62

    CAS  Google Scholar 

  • Waheed R, El Asely AM, Bakery H et al (2020) Thermal stress accelerates mercury chloride toxicity in Oreochromis niloticus via up-regulation of mercury bioaccumulation and HSP70 mRNA expression. Sci Total Environ 718:137326

    CAS  Google Scholar 

  • Wen B, Jin SR, Chen ZZ et al (2017) Plasticity of energy reserves and metabolic performance of discus fish (Symphysodon aequifasciatus) exposed to low-temperature stress. Aquaculture 481:169–176

    Google Scholar 

  • Woo SJ, Chung JK (2020) Effects of trichlorfon on oxidative stress, neurotoxicity, and cortisol levels in common carp, Cyprinus carpio L., at different temperatures. Comp Biochem Phys C 229:108698

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-H. Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals rights

All procedures and animal handling were in accordance with the guidelines: OECD Guideline for Testing of Chemicals, No.204: “Fish, Prolonged Toxicity Test: 14-day Study,” adopted April 4, 1984, and OECD Guideline for Testing of Chemicals, No.215: “Fish, Juvenile Growth Test,” adopted January 21, 2000. And the study was approved by the animal ethics committee of Shandong University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Editorial responsibility: Jing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZH., Li, P. & Wu, Y. Effects of waterborne mercury at different temperatures on hematology and energy metabolism in grass carp (Ctenopharyngodon idella). Int. J. Environ. Sci. Technol. 18, 1489–1498 (2021). https://doi.org/10.1007/s13762-020-02906-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02906-7

Keywords

Navigation