Skip to main content

Advertisement

Log in

Seasonal variation of the criteria air pollutants concentration in an urban area of a high-altitude city

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Analysis of air pollutants (CO, PM2.5, NO2 and O3), during the dry and rainy seasons of 2015, was conducted in a high-traffic area of Quito, Ecuador. Variations in the annual, diurnal, weekdays, weekends, daytime and nighttime concentration of these pollutants were examined using the data obtained from the public records of the monitoring network in Quito. The highest concentrations of CO, PM2.5 and NO2 occurred during the rush hours of the rainy season, while the maximum O3 concentrations occurred during the midday of the dry season due to the improvement in the O3-generating photochemical reactions. The “weekend effect” was also observed in this study and was likely primarily due to the accumulation of O3 in the air. Moreover, the PM2.5 concentration was higher during the nighttime than during daytime, mainly in the dry season due to the poor horizontal diffusion of PM2.5 and the absence of precipitation events, while the O3 concentration was higher during the daytime in both seasons due to the enhancement of the photochemical reactions. A Pearson analysis showed that CO, PM2.5 and NO2 were positively intercorrelated. It was identified, through polar plots and a real-time traffic map that the emission sources of these pollutants were in the proximity to the monitoring station, specifically vehicle exhaust emissions. Atmospheric horizontal mixing was an important dilution mechanism of PM2.5 and NO2 during the dry season, while transportation of O3 contributed to its increasing concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alghamdi MA, Khoder M, Harrison RM, Hyvärinen A-P, Hussein T, Al-Jeelani H, Abdelmaksoud AS, Goknil MH, Shabbaj II, Almehmadi FM, Lihavainen H, Kulmala M, Hämeri K (2014) Temporal variations of O3 and NOx in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Atmos Environ 94:205–214

    CAS  Google Scholar 

  • Altshuler SL, Arcado TD, Lawson DR (1995) Weekday vs. weekend ambient ozone concentrations: discussion and hypotheses with focus on northern California. J Air Waste Manag Assoc 45:967–972

    CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101

    CAS  Google Scholar 

  • Atkinson-Palombo CK, Miller JA, Balling RC (2006) Quantifying the ozone ‘‘weekend effect’’ at various locations in Phoenix, Arizona. Atmos Environ 40:7644–7658

    CAS  Google Scholar 

  • Baca JC (2014) Informe final Inventario de emisiones de contaminantes criterio, DMQ, 2011. Distrito Metropolitano de Quito, Secretaría de Ambiente. https://www.quitoambiente.gob.ec/ambiente/phocadownload/cambio_climatico/infor_final_ie_criterio_dmq2011_1.pdf.

  • Blanchard CL, Fairley D (2001) Spatial mapping of VOC and NOx limitation of ozone formation in central California. Atmos Environ 35:3861–3873

    CAS  Google Scholar 

  • Brachtl MV, Durant JL, Perez CP, Oviedo J, Sempertegui F, Naumova EN, Griffiths JK (2009) Spatial and temporal variations and mobile source emissions of polycyclic aromatic hydrocarbons in Quito, Ecuador. Environ Pollut 157:528–536

    CAS  Google Scholar 

  • Cazorla M (2016) Air quality over a populated Andean region: Insights from measurements of ozone, NO, and boundary layer depths. Atmos Pollut Res 7:66–74

    Google Scholar 

  • Cazorla M (2013) Análisis de los datos horarios de radiación solar y abundancia de ozono del Distrito Metropolitano de Quito del 2007 al 2012. Avances en Ciencias e Ingeniería 5:C67–C78

    Google Scholar 

  • Chantara S, Sillapapiromsuka S, Wiriya W (2012) Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005–2009), their possible sources and relation to air mass movement. Atmos Environ 60:88–98

    CAS  Google Scholar 

  • Chelani AB (2012) Persistence analysis of extreme CO, NO2 and O3 concentrations in ambient air of Delhi. Atmos Res 108:128–134

    CAS  Google Scholar 

  • Chen X, Li X, Yuan X, Zeng G, Liang J, Li X, Xu W, Luo Y, Chen G (2018) Effects of human activities and climate change on the reduction of visibility in Beijing over the past 36 years. Environ Int 116:92–100

    Google Scholar 

  • Cheng Y, He K, Du Z, Zheng M, Duan F, Ma Y (2015) Humidity plays an important role in the PM2.5 pollution in Beijing. Environ Pollut 197:68–75

    CAS  Google Scholar 

  • Chiu KH, Sree U, Tseng SH, Wu C-H, Lo J-G (2005) Differential optical absorption spectrometer measurement of NO2, SO2, O3, HCHO and aromatic volatile organics in ambient air of Kaohsiung Petroleum Refinery in Taiwan. Atmosph Environ 39:941–955

    CAS  Google Scholar 

  • Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2014) Global distribution and trends of tropospheric ozone: An observation-based review. Elem Sci Anth 2:000029

    Google Scholar 

  • De Nevers N (2017) Air pollution control engineering, 2nd edn. Waveland Press Inc., USA

    Google Scholar 

  • El Comercio (2015). Hasta USD 209.8 en multas si no matriculó su vehículo. https://www.elcomercio.com/actualidad/multas-matriculacion-vehiculo-quito.html (Accessed 03 June 2020).

  • Estrella B, Estrella R, Oviedo J, Narváez X, Reyes MT, Gutiérrez M, Naumova EN (2005) Acute respiratory diseases and carboxyhemoglobin status in school children of Quito. Ecuador Environ Health Perspect 113:607–611

    CAS  Google Scholar 

  • Fernandes FMC, Martins ES, Pedrosa DMAS, Evangelista MDSN (2017) Relationship between climatic factors and air quality with tuberculosis in the federal district, Brazil, 2003–2012. Braz J Infect Dis 21:369–375

    Google Scholar 

  • Fujita EM, Campbell DE, Zielinska B, Sagebiel JC, Bowen JL, Goliff WS, Stockwell WR, Lawson DR (2003a) Diurnal and weekend variations in the source contributions of ozone precursors in California’s south coast air basin. J Air Waste Manag Assoc 53:844–863

    CAS  Google Scholar 

  • Fujita EM, Stockwell WR, Campbell DE, Keislar RE, Lawson DR (2003b) Evolution of the magnitude and spatial extent of the weekend ozone effect in California’s South costa air basin, 1981–2000. J Air Waste Manag Assoc 53:802–815

    CAS  Google Scholar 

  • Garmin (2011) eTrex owner’s manual 60. Garmin International, Inc. 1200 East 151st Street, Oathe, Kansas 66062 U.S.A.

  • Goudarzi G, Geravandi S, Naimabadi A, Mohammadi MJ, Neisi AK, Taghavirad S, Filban F (2014) Cardiovascular deaths related to Carbon monoxide Exposure in Ahvaz. Iran Iran J Health Saf Environ 1:126–131

    Google Scholar 

  • Green J, Sánchez S (2013) Air Quality in Latin America: An Overview. Clean Air Institute, Washington D.C.

  • Harris AM, Sempértegui F, Estrella B, Narváez X, Egas J, Woodin M, Durant JL, Naumova EN, Griffiths JK (2011) Air pollution and anemia as risk factors for pneumonia in Ecuadorian children: A retrospective cohort analysis. Environ Health 3:10–93

    Google Scholar 

  • Hu X-M, Zhang Y, Jacobson MZ, Chan CK (2008) Coupling and evaluating gas/ particle mass transfer treatments for aerosol simulation and forecast. J Geophys Res 113:D11208

    Google Scholar 

  • INAMHI (Instituto Nacional de Meteorología e Hidrología) (2020) Anuarios meteorológicos. https://www.serviciometeorologico.gob.ec/biblioteca/ (Accessed 4 April 2020).

  • INEC (Instituto Nacional de Estadísticas y Censos) (2018) Anuario de estadísticas de transporte 2017. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Economicas/Estadistica%2520de%2520Transporte/2017/2017_TRANSPORTE_PRESENTACION.pdf (Accessed 10 April 2019).

  • Jazcilevich AD, García AR, Caetano E (2005) Locally induced surface air confluence by complex terrain and its effects on air 509 pollution in the valley of Mexico. Atmos Environ 39:5481–5489

    CAS  Google Scholar 

  • Khoder MI (2009) Diurnal, seasonal and weekdays-weekends variations of ground level ozone concentrations in an urban area in Greater Cairo. Environ Monit Assess 149:349–362

    CAS  Google Scholar 

  • Kim YP, Seinfeld JH (1995) Atmospheric gas-aerosol equilibrium: III. Thermodynamics of crustal elements Ca2+, K+, and Mg2+. Aerosol Sci Technol 22:93–110

    CAS  Google Scholar 

  • Kim YP, Seinfeld JH, Saxena P (1993a) Atmospheric Gas-aerosol equilibrium I. Thermodynamic model Aerosol Sci Technol 19:157–181

    CAS  Google Scholar 

  • Kim YP, Seinfeld JH, Saxena P (1993b) Atmospheric gas-aerosol equilibrium II. Analysis of common approximations and activity coefficient calculations methods. Aerosol Sci Technol 19:182–198

    CAS  Google Scholar 

  • Kleine D, Zalakeviciute R, Gonzalez M, Rybarczyk Y (2017) Modeling PM2.5 urban pollution using machine learning and selected meteorological parameters. J Elect Comput Eng Article ID 5106045.

  • Kliengchuay W, Meeyai AC, Worakhunpiset S, Tantrakarnapa K (2018) Relationships between meteorological parameters and particulate matter in Mae Hong Son province, Thailand. Int J Environ Res Public Health 15:2801

    CAS  Google Scholar 

  • Koupal J, Palacios C (2019) Impact of new fuel specifications on vehicle emissions in Mexico. Atmos Environ 201:41–49

    CAS  Google Scholar 

  • Li X, Chen X, Yuan X, Zeng G, León T, Liang J, Chen G, Yuan X (2017) Characteristics of particulate pollution (PM2.5 and PM10) and their space scale-dependent relationships with meteorological elements in china. Sustainability 9:2330.

  • López ML, Ceppi S, Palancar GG, Olcese LE, Tirao G, Toselli BM (2011) Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba city. Argentina Atmos Environ 45:5450–5457

    Google Scholar 

  • Lou C, Liu H, Li Y, Peng Y, Wang J, Dai L (2017) Relationship of relative humidity with PM2.5 and PM10 in the Yangtze River Delta. China Environ Monit Assess 11:189–582

    Google Scholar 

  • Ma QX, Wu YF, Zhang DZ, Wang XJ, Xia YJ, Liu XY, Tian P, Han ZW, Xia XG, Wang Y, Zhang RJ (2017) Roles of regional transport and heterogeneous reactions in the PM2.5 increase during winter haze episodes in Beijing. Sci Total Environ 599:246–253

    Google Scholar 

  • Marr LC, Harley RA (2002a) Modelling the effect of weekday weekend differences in motor vehicle emissions on photochemical pollution in Central California. Environ Sci Technol 36:4099–4106

    CAS  Google Scholar 

  • Marr LC, Harley RA (2002b) Spectral analysis of weekday weekend differences in ambient ozone, nitrogen oxide and non-methane hydrocarbon time series in California. Atmos Environ 36:2327–2335

    CAS  Google Scholar 

  • Mavroidis I, Ilia M (2012) Trends of NOx, NO2 and O3 concentrations at three different types of air quality monitoring stations in Athens, Greece. Atmos Environ 63:135–147

    CAS  Google Scholar 

  • Meng C, Cheng T, Gu X, Shi S, Wang W, Wu Y, Bao F (2019) Contribution of meteorological factors to particulate pollution during winters in Beijing. Sci Total Environ 656:977–985

    CAS  Google Scholar 

  • Ngele SO, Eboatu AN, Onwu FK (2012) Preliminary study of the influence of some meteorological parameters on the concentration of CO in South Earnest part of Nigeria. Chem Sci Trans 1:702–708

    Google Scholar 

  • Ocak S, Turalioglu FS (2008) Effect of meteorology on the atmospheric concentrations of traffic-related pollutants in Erzurum, Turkey. J Int Environ Appl Sci 3:325–335

    CAS  Google Scholar 

  • Parra R (2017) Assessment of planetary boundary layer schemes of the WRF-CHEM model in the simulation of carbon monoxide dispersion in the urban area of Quito, Ecuador. WIT Trans Ecol Environ 211:41–50

    CAS  Google Scholar 

  • Parra R, Franco E (2016) Identifying the ozone weekend effect in the air quality of the northern Andean region of Ecuador. WIT Trans Ecol Environ 207:169–180

    CAS  Google Scholar 

  • Paschalidou AK, Kassomenos PA (2004) Comparison of air pollutant concentrations between weekdays and weekends in Athens, Greece for various meteorological conditions. Environ Technol 25:1241–1255

    CAS  Google Scholar 

  • Pérez P, Trier A, Reyes J (2000) Prediction of PM2.5 concentrations several hours in advance using neutral networks in Santiago. Chile Atmos Environ 34:1189–1196

    Google Scholar 

  • Pinto DM, Blande JD, Souza SR, Nerg AM, Holopainen JK (2010) Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 36:22–34

    CAS  Google Scholar 

  • Pope CA, Dockery DW (2012) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage 56:709–742

    Google Scholar 

  • Pudasainee D, Sapkota B, Shrestha ML, Kaga A, Kondo A, Inoue Y (2006) Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley. Nepal Atmos Environ 40:8081–8087

    CAS  Google Scholar 

  • Qin Y, Tonnesen GS, Wang Z (2004) One-hour and eight-hour average ozone in California south coast Air Basin: trends in peak values and sensitivity to precursors. Atmos Environ 38:2197–2207

    CAS  Google Scholar 

  • Querol X, Alastuey A, Rodríguez S, Plana F, Ruiz C, Cots N, Massagué G, Puig O (2001) PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia. Spain Atmos Environ 35:6407–6419

    CAS  Google Scholar 

  • Ramírez O, Sánchez de la Campa AM, Amato F, Catacolí RA, Rojas NY, de la Rosa J (2018a) Chemical composition and source apportionment of PM10 at an urban background site in a high-altitude Latin America megacity (Bogota, Argentina). Environ Pollut 233:142–155

    Google Scholar 

  • Ramírez O, Sánchez de la Campa AM, de la Rosa J (2018b) Characteristics and temporal variations of organic and elemental carbon aerosols in a high-altitude tropical Latin American megacity. Atmos Res 210:110–122

    Google Scholar 

  • Ran L, Zhao C, Geng F, Tie X, Tang X, Peng L, Zhou G, Yu Q, Xu J, Guenther A (2009) Ozone photochemical production in urban Shanghai, China: analysis based on ground level observations. J Geophys Res 114:D15301

    Google Scholar 

  • Richter A, Burrows JP, NüB H, Granier C, Niemeier U (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437:129–132

    CAS  Google Scholar 

  • Riga-Karandinos A-N, Saitanis C (2005) Comparative assessment of ambient air quality in two typical Mediterranean coastal cities in Greece. Chemosphere 59:1125–1136

    CAS  Google Scholar 

  • Sadanaga Y, Shibata S, Hamana M, Takenaka N, Bandow H (2008) Weekday/weekend difference of ozone and its precursors in urban areas of Japan, focusing on nitrogen oxides and hydrocarbons. Atmos Environ 42:4708–4723

    CAS  Google Scholar 

  • Schmitz R (2005) Modelling of air pollution dispersion in Santiago de Chile. Atmos Environ 39:2035–2047

    CAS  Google Scholar 

  • Secretaría de Ambiente (2014) Informe Final inventario de emisiones de contaminantes criterio, DMQ 2011. https://www.quitoambiente.gob.ec/ambiente/index.php/informes#inventario-de-emisiones-2011 (Accessed 10 April 2019).

  • Secretaría del Ambiente (2019) Red de Monitoreo Atmosférico. http:// https://www.quitoambiente.gob.ec/ambiente/index.php/generalidades (Accessed 19 April 2019).

  • Seguel S, Morales R, Leiva M (2009) Estimations of primary and secondary organic carbon formation in PM2.5 aerosols of Santiago City. Chile Atmos Environ 43:2125–2131

    Google Scholar 

  • Song F, Shin JY, Jusino-Atresino R, Gao Y (2011) Relationships among the springtime ground-level NOx, O3, and NO3 in the vicinity of highways in the US East Coast. Atmos Poll Res 2:374–383

    CAS  Google Scholar 

  • Stephens S, Madronich S, Wu F, Olson JB, Ramos R, Retama A, Muñoz R (2008) Weekly patterns of México city’s surface concentrations of CO, NOx, PM10, and O3 during 1986–2007. Atmos Chem Phy 8:5313–5325

    CAS  Google Scholar 

  • Stewart DR, Saunders E, Perea R, Fitzgerald R, Campbell DE, Stockwell WR (2019) Projected changes in particulate matter concentrations in the South Coast air basin due to basin-wide reductions in nitrogen oxides, volatile organic compounds, and ammonium emissions. J Air Waste Manag Assoc 69:192–208

    CAS  Google Scholar 

  • Sun YL, Wang ZF, Du W, Zhang Q, Wang QQ, Fu PQ, Pan XL, Li J, Jayne J, Worsnop DR (2015) Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmos Chem Phys 15:10149–10165

    CAS  Google Scholar 

  • Sun YL, Wang ZF, Fu PQ, Yang T, Jiang Q, Dong HB, Li J, Jia JJ (2013) Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos Chem Phys 13:4577–4592

    Google Scholar 

  • Tran HNQ, Mölders N (2011) Investigations on meteorological conditions for elevated PM2.5 in Fairbanks. Alaska Atmos Res 99:39–49

    CAS  Google Scholar 

  • Turner MC, Jerrett M, Pope C, Krewski D, Gapstur SM, Diver WR, Beckerman BS, Marshall JD, Su J, Crouse DL, Burnett RT (2016) Long-Term Ozone Exposure and Mortality in a Large Prospective Study. Am J Respir Crit Care Med 193:1134–1142

    CAS  Google Scholar 

  • US-EPA (United States Environmental Protection Agency). Criteria air pollutants. Web site. https://www.epa.gov/criteria-air-pollutants (Accessed 03 June 2019).

  • Vega D, Parra R (2014) Caracterización de la intensidad media diaria y de los perfiles horarios del tráfico vehicular del Distrito Metropolitano de Quito. Avances en Ciencias e Ingeniería 6:C40–C45

    Google Scholar 

  • Vellingiri K, Kim KH, Jeon JY, Brown RJC, Jung MC (2015) Changes in NOx and O3 concentrations over a decade at a central urban area of Seoul, Korea. Atmos Environ 112:116–125

    CAS  Google Scholar 

  • World Health Organization WHO (2005) ssAir Quality Guidelines-global update 2005. WHO. Web site.https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;jsessionid=EDEDC23411D0DD29BE3D45DC26D3FCDC?sequence=1. Accessed 03 June 2020

  • Xu J, Yan F, Xie Y, Wang F, Wu J, Fu Q (2015) Impact of meteorological conditions on a nine-day particulate matter pollution event observed in December 2013, Shanghai, China. Particuology 20:69–79

    CAS  Google Scholar 

  • Yang Y, Liu X, Zheng J, Tan Q, Feng M, Qu Y, An J, Cheng N (2019) Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. J Environ Sci (China) 79:297–310

    Google Scholar 

  • Yates D, Purkey D, Flores-Lopez F, Forni L, Estacio J, Depsky N, Tehelen K (2013) Distrito Metropolitano de Quito: Análisis Integrado de Amenazas Relacionada con el Cambio Climático, aspectos naturales y socioeconómicos. https://www.quitoambiente.gob.ec/ambiente/phocadownload/cambio_climatico/Proyectos/wp1_analisis_clima_dmq.pdf. Accessed 03 June 2020

  • Zalakeviciute R, Bastidas M, Buenaño A, Rybarczyk Y (2020) A Traffic-Based method to predict and map Urban Air Quality. Appl Sci 10:2035

    CAS  Google Scholar 

  • Zalakeviciute R, López-Villada J, Rybarczyk Y (2018a) Contrasted effects of relative humidity and precipitation or urban PM25 pollution in high elevation urban areas. Sustainability 10:2064

    Google Scholar 

  • Zalakeviciute R, Rybarczyk Y, López-Villada J, Diaz Suarez MV (2018b) Quantifying decade-long effects of fuel and traffic regulations on urban ambient PM2.5 pollution in mid-size South American city. Atmos Pollut Res 9:66–75

    CAS  Google Scholar 

  • Zallaghi E, Geravandi S, Haddad MN, Goudarzi G, Valipour L, Salmanzadeh S, Hashemzadeh B, Zahedi A, Mohammadi MJ, Soltani F (2015) Estimation of health effects attributed to nitrogen dioxide exposure using the AirQ model in Tabriz City. Iran Health Scope 4:31–37

    Google Scholar 

  • Zambrano-Barragán C, Zevallos O, Villacís M, Enríquez D (2010) Quito’s climate change strategy: a response to climate change in the metropolitan district of quito, Ecuador. In: Otto-Zimmermann K (ed) Resilient Cities. Local Sustainability, Springer, Dordrecht, pp 515–529

    Google Scholar 

  • Zhang H, Wang Y, Hu J, Ying Q, Hu X-M (2015) Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environ Res 140:242–254

    CAS  Google Scholar 

  • Zhang L, Guo X, Zhao T, Gong S, Xu X, Li Y, Luo L, Gui K, Wang H, Zheng Y, Yin X (2019) A modelling study of the terrain effects on haze pollution in the Sichuan Basin. Atmos Environ 196:77–85

    CAS  Google Scholar 

Download references

Acknowledgements

The present work was made thanks to the daily data obtained from the web page of the “Secretaría de Ambiente del Municipio del Distrito Metropolitano de Quito.” This work was supported by Universidad de Las Américas, Quito-Ecuador (UDLA, Grant number: AMB.KAF.19.04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Alexandrino.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Samareh Mirkia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrino, K., Zalakeviciute, R. & Viteri, F. Seasonal variation of the criteria air pollutants concentration in an urban area of a high-altitude city. Int. J. Environ. Sci. Technol. 18, 1167–1180 (2021). https://doi.org/10.1007/s13762-020-02874-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02874-y

Keywords

Navigation