Skip to main content
Log in

Spectral analysis approach to study the association between total ozone concentration and surface temperature

  • Short Communication
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The present study endeavors to explore the association between total column ozone (TCO) and surface temperature (ST) over Kolkata, India, during September–November through time series approach. A spectral analysis approach is adopted to investigate the existence of any common cycle in TCO and ST time series. The spectra have been computed, and it has been observed that there exist common spectra of period 24 in both the time series explored in daily scale. The existence of common spectra among TOC and ST during the transition period from monsoon to post-monsoon has been interpreted as a proof of the similarity in fluctuation pattern of TCO and ST. Details of the dependence of the variability of TCO on ST have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Baldocchi D, Falge E, Wilson K (2001) A spectral analysis of biosphere–atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agric For Meteorol 107(1):1–27

    Article  Google Scholar 

  • Barnett JJ, Houghton JT, Pyle JA (1975) The temperature dependence of the ozone concentration near the stratopause. Q J R Meteorol Soc 101(428):245–257

    Article  Google Scholar 

  • Brunamonti S, Jorge T, Oelsner P, Hanumanthu S, Singh BB, Kumar KR, Sonbawne S, Meier S, Singh D, Wienhold FG, Luo BP (2018) Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016–2017. Atmos Chem Phys 18(21):15937–15957

    Article  CAS  Google Scholar 

  • Chandra S, Varotsos C, Flynn LE (1996) The mid-latitude total ozone trends in the northern hemisphere. Geophys Res Lett 23(5):555–558

    Article  CAS  Google Scholar 

  • Chattopadhyay G, Chattopadhyay S (2009) Autoregressive forecast of monthly total ozone concentration: a neurocomputing approach. Comput Geosci 35(9):1925–1932

    Article  CAS  Google Scholar 

  • Chellali F, Khellaf A, Belouchrani A (2010) Wavelet spectral analysis of the temperature and wind speed data at Adrar, Algeria. Renew Energy 35(6):1214–1219

    Article  Google Scholar 

  • Choi YS, Ho CH, Chen D, Noh YH, Song CK (2008) Spectral analysis of weekly variation in PM10 mass concentration and meteorological conditions over China. Atmos Environ 42(4):655–666

    Article  CAS  Google Scholar 

  • Cracknell AP, Varotsos CA (2007) Fifty years after the first artificial satellite: from Sputnik 1 to ENVISAT. Int J Remote Sens 28(10):2071–2072

    Article  Google Scholar 

  • Efstathiou MN, Varotsos CA, Singh RP, Cracknell AP, Tzanis C (2003) On the longitude dependence of total ozone trends over middle-latitudes. Int J Remote Sens 24(6):1361–1367

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007—synthesis report

  • Jana PK, Bhattacharyya S, Banerjee A (2014) Effect of some climatic parameters on tropospheric and total ozone column over Alipore (22.52°N, 88.33°E). J Earth Syst Sci 123(7):1653–1669

    Article  CAS  Google Scholar 

  • Joshi MK, Pandey AC (2011) Trend and spectral analysis of rainfall over India during 1901–2000. J Geophys Res Atmos 116:D06104

    Article  Google Scholar 

  • Londhe AL, Padma Kumari B, Kulkarni JR, Jadhav DB (2005) Monsoon circulation induced variability in total column ozone over India. Curr Sci 89(1):164–167

    CAS  Google Scholar 

  • Midya SK, Saha U (2011) Role of the rate of change of Total Column Ozone during different seasons on the prediction of Indian summer monsoon rainfall over Gangetic West Bengal, India. Indian J Phys 85(10):1461–1468

    Article  CAS  Google Scholar 

  • Midya SK, Sarkar H, Manna A (2003) Co-variation of daily maximum temperature and ozone concentration over Calcutta. Recent Trends in Astro and Plasma Physics in India, pp. 241–251

  • Midya SK, Ghosh D, Ganda SC, Sarkar H (2011) Seasonal variation of daily total column ozone (TCO) and role of its depletion and formation rate on surface temperature over Dumdum at Kolkata, India. Indian J Phys 85(8):1247

    Article  CAS  Google Scholar 

  • Ningombam SS, Vemareddy P, Song HJ (2020) Effect of lower stratospheric temperature on total ozone column (TOC) during the ozone depletion and recovery phases. Atmos Res 232:104686

    Article  Google Scholar 

  • Oh J, Son SW, Williams K, Walters D, Kim J, Willett M, Earnshaw P, Bushell A, Kim Y, Kim J (2018) Ozone sensitivity of tropical upper-troposphere and stratosphere temperature in the MetOffice Unified Model. Q J R Meteorol Soc 144(715):2001–2009

    Article  Google Scholar 

  • Panofsky HA (1955) Meteorological applications of power-spectrum analysis. Bull Am Meteorol Soc 36(4):163–166

    Article  Google Scholar 

  • Raj A, Thankamani S, Venkat Ratnam M, Narayana Rao D, Murthy K, Venkata B (2018) Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region. Ann Geophys 36(1):149–165

    Article  CAS  Google Scholar 

  • Sahoo A, Sarkar S, Singh RP, Kafatos M, Summers ME (2005) Declining trend of total ozone column over the northern parts of India. Int J Remote Sens 26(16):3433–3440

    Article  Google Scholar 

  • Sebald L, Treffeisen R, Reimer E, Hies T (2000) Spectral analysis of air pollutants. Part 2: ozone time series. Atmos Environ 34(21):3503–3509

    Article  CAS  Google Scholar 

  • Shangguan M, Wang W, Jin S (2019) Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data. Atmos Chem Phys 19(10):6659–6679

    Article  CAS  Google Scholar 

  • Steinbrecht W, Hassler B, Claude H, Winkler P, Stolarski RS (2003) Global distribution of total ozone and lower stratospheric temperature variations. Atmos Chem Phys 3(5):1421–1438

    Article  CAS  Google Scholar 

  • Steinbrecht W, Haßler B, Brühl C, Dameris M, Giorgetta MA, Grewe V, Manzini E, Matthes S, Schnadt C, Steil B, Winkler P (2006) Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations. Atmos Chem Phys 6(2):349–374

    Article  CAS  Google Scholar 

  • Tandon A, Attri AK (2011) Trends in total ozone column over India: 1979–2008. Atmos Environ 45(9):1648–1654

    Article  CAS  Google Scholar 

  • Varotsos C (2002) The southern hemisphere ozone hole split in 2002. Environ Sci Pollut Res 9(6):375–376

    Article  Google Scholar 

  • Varotsos C (2004) The extraordinary events of the major, sudden stratospheric warming, the diminutive Antarctic ozone hole, and its split in 2002. Environ Sci Pollut Res 11(6):405

    Article  CAS  Google Scholar 

  • Varotsos C, Kirk-Davidoff D (2006) Long-memory processes in ozone and temperature variations at the region 60 S–60 N. Atmos Chem Phys 6(12):4093–4100

    Article  CAS  Google Scholar 

  • Varotsos CA, Efstathiou MN, Cracknell AP (2013) On the scaling effect in global surface air temperature anomalies. Atmos Chem phys 13(10):5243–5253

    Article  CAS  Google Scholar 

  • Varotsos CA, Efstathiou MN, Cracknell AP (2017a) On the temporal evolution of the tropical stratospheric ozone. J Atmos Solar Terr Phys 157:1–5

    Article  Google Scholar 

  • Varotsos CA, Efstathiou MN, Cracknell AP (2017b) On the association of aerosol optical depth and total ozone fluctuations with recent earthquakes in Greece. Acta Geophys 65(4):659–665

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic Press, ISBN 0127519661, 9780127519661

  • WMO (2006) World Meteorological Organization and UN Environment Program, Scientific Assessment of Ozone Depletion: 2006, Executive Summary, Geneva

  • Wulandari P, Halide H (2019) Development of the total ozone column model prediction based on stratospheric zonal wind and temperature over the Maritime Equatorial Region. In: IOP conference series: earth and environmental science. vol 279, No 1, IOP Publishing, p 012050

Download references

Acknowledgements

The authors sincerely acknowledge the thoughtful comments from the anonymous reviewers. Goutami Chattopadhyay is supported by DST, Govt. of India, under Project Grant No. SR/WOS-A/EA-10/2017(G). Authors Surajit Chattopadhyay and Goutami Chattopadhyay are thankful to IUCAA, Pune, India, for the hospitality. The surface temperature data are due to the India Meteorological Department. The TOC data are collected from OMDOAO3e: OMI/Aura Ozone (O3) DOAS Total Column L3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chattopadhyay.

Ethics declarations

Conflict of interest

The authors hereby declare that they have no conflict of interest associated with this work.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, G., Chattopadhyay, S. Spectral analysis approach to study the association between total ozone concentration and surface temperature. Int. J. Environ. Sci. Technol. 17, 4353–4358 (2020). https://doi.org/10.1007/s13762-020-02763-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02763-4

Keywords

Navigation