Skip to main content
Log in

Flue gas purification from NO using supported Cu–Mn and Cu–Mn–Nb catalysts synthesized by electroless metal deposition method

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, granular fixed-bed catalysts with active Cu–Mn and Cu–Mn–Nb layers synthesized by electroless metal deposition method were prepared and tested for purification of a flue gas from nitrogen monoxide (NO) by CO. Lightweight expanded clay aggregate with i.d. of 2–4 mm and 8–10 mm was used as a substrate for deposition of the active layer. Elemental composition of the prepared catalytic layers was determined by means of inductively coupled plasma optical emission spectroscopy and energy-dispersive X-ray analysis. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were applied to investigate morphology of the active layers and the oxidation state of the main components (Mn, Cu and Nb), respectively. Additionally, X-ray diffraction analysis and energy-dispersive X-ray mapping were conducted to provide comprehensive information about the structure and dispersion of active components on the surface of the catalysts prepared. It was demonstrated that electroless metal deposition method allows preparation of a relatively uniform active layer with highly distributed active sites on the substrate surface, while the Cu0.012–Mn0.986Nb0.0012 active layer synthesized by electroless metal deposition can be successfully applied for selective catalytic reduction of NO with the use of CO as a reductant. The effective NO conversion (90–95%) was observed at temperatures of 300–400 °C and higher. X-ray photoelectron spectroscopy revealed that significant amount of Mn3+ and Mn4+ species and predominance of chemisorbed oxygen over the lattice oxygen should be responsible for NO conversion efficiency of the catalyst prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

Download references

Acknowledgements

The financial support of the EU Structural Funds (Project Code 09.3.3-ESFA-V-711–01-0001) is gratefully acknowledged. Furthermore, the authors would like to thank Juratė Vačiūnienė for the ICP-OES analyses conducted for the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Urbanas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltrėnas, P., Urbanas, D., Sukackienė, Z. et al. Flue gas purification from NO using supported Cu–Mn and Cu–Mn–Nb catalysts synthesized by electroless metal deposition method. Int. J. Environ. Sci. Technol. 17, 3857–3874 (2020). https://doi.org/10.1007/s13762-020-02745-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02745-6

Keywords

Navigation