Skip to main content

Phenol biodegradation by the strain Pseudomonas putida affected by constant electric field

Abstract

Phenol and its derivatives are some of the most dangerous organic pollutants released into the environment. Various methods, including microbial processes, have been applied to reduce their concentrations to acceptable values in the waste streams. The present study considers the effect of constant electric field on the phenol biodegradation potential of the strain Pseudomonas putida in aqueous media. The following significant effects are observed: the constant electric field applied enhances the specific growth rate of the bacteria studied at a specified anode potential, i.e., 0.8 V versus the standard hydrogen electrode, compared to a culture without application of electricity. The amount of destroyed phenol at this anode potential is three times higher than that at the control experiment. The enzyme analyses show that the electric field stimulates the activity of phenol hydroxylase (from 0.095 to 0.281 U/mg protein) and catechol-1,2-dioxylase (from 0.688 to 1.22 U/mg protein) at the same anodic potential. The lack of catechol-2,3-dioxylase activity is an indication for the ortho-oxidative pathway for phenol biodegradation in the case under consideration. Comparison of the electric current efficiencies, measured (3.2 mA h) and stoichiometric (2.54 A h) ones shows that the stimulation effect is of biochemical origin, but not due to electrochemical processes on the anode.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ailijiang N, Chang J, Liang P, Li P, Wu Q, Zhang X, Huang X (2016) Electrical stimulation on biodegradation of phenol and responses of microbial communities in conductive carriers supported biofilms of the bioelectrochemical reactor. Bioresour Technol 201:1–7. https://doi.org/10.1016/j.biortech

    CAS  Article  Google Scholar 

  • Alexieva Z, Gerginova M, Manasiev J, Zlateva P, Shivarova N, Krastanov A (2008) Phenol and cresol mixture by the yeast Trichosporoncutaneum. J Ind Microbiol Biotechnol 35:1297–1301

    CAS  Article  Google Scholar 

  • Aslanimehr M, Pahlevan A-A, Fotoohi-Qazvini F, Jahani-Hashemi H (2013) Effects of extremely low frequency electromagnetic fields on growth and viability of bacteria. Int J Res Med Health Sci 1:8–15

    Google Scholar 

  • Baggi G, Barbieri P, Galli E, Tollari S (1987) Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl Environ Microbiol 53:2129–2132

    CAS  Article  Google Scholar 

  • Beretta G, Mastorgio A, Pedrali L, Saponaro S, Sezenna E (2019) The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioremediation. Rev Environ Sci Bio/Technol 18:29–75. https://doi.org/10.1007/s11157-018-09491-9

    Article  Google Scholar 

  • Bertollo FB, Lopes GC, Silva EL (2017) Phenol Biodegradation by Pseudomonas putida in an airlift reactor: assessment of kinetic, hydrodynamic, and mass transfer parameters. Water Air Soil Pollut 228:398. https://doi.org/10.1007/s11270-017-3569-0

    CAS  Article  Google Scholar 

  • Beschkov VN, Peeva LG (1994) Effect of electric current passing through the fermentation broth of a strain Acetobactersuboxydans. Bioelectrochem Bioenerg 34:185–188

    CAS  Article  Google Scholar 

  • Beschkov V, Velizarov S, Agathos SN, Lukova V (2004) Bacterial denitrification of wastewater stimulated by constant electric field. Biochem Eng J 17:141–145

    CAS  Article  Google Scholar 

  • Caetano M, Valderrama C, Farran A, Cortina JL (2009) Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins. J Colloid Interface Sci 338:402–409. https://doi.org/10.1016/j.jcis.2009.06.062

    CAS  Article  Google Scholar 

  • Carmona M, De Lucas A, Valverde JL, Velasco B, Rodrıguez JF (2006) Combined adsorption and ion exchange equilibrium of phenol on Amberlite IRA-420. Chem Eng J 117:155–160

    CAS  Article  Google Scholar 

  • Chandana Lakshmi MVV, Sridevi V (2009) A review on biodegradation of phenol from industrial effluents. J Ind Pollut Control 25:13–27

    Google Scholar 

  • Dagley S, Gubson DT (1965) The bacterial degradation of catechol. J Biochem 95:466–474

    CAS  Article  Google Scholar 

  • Dehghani S, Rezaee A, Moghiseh Z (2018) Phenol biodegradation in an aerobic fixed-film process using. conductive bioelectrodes: Biokinetic and kinetic studies. Desalin Water Treat 105:126–131

    CAS  Article  Google Scholar 

  • Dey SK, Mukherjee A (2016) Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies. CoordChem Rev 310:80–115. https://doi.org/10.1016/j.ccr.2015.11.002

    CAS  Article  Google Scholar 

  • Fan X, Wang H, Luo Q, MA J, Zhang H (2007) The use of 2D non-uniform electric field to enhance in situ bioremediation of 2,4-dichlorophenol-contaminated soil. J Hazard Mater 148:29–37. https://doi.org/10.1016/j.jhazmat.2007.01.144

    CAS  Article  Google Scholar 

  • Field SJ, Thornton NP, Anderson LJ, Gates AJ, Reilly A, Jepson BJN, Richardson DJ, George SJ, Cheesman MR, Butt JN (2005) Reductive activation of nitrate reductases. Dalton Trans 21:3580–3586. https://doi.org/10.1039/b505530j

    CAS  Article  Google Scholar 

  • Gerginova M, Manasiev J, Yemendzhiev H, Terziyska A, Peneva N, Alexieva Z (2013) Biodegradation of phenol by Antarctic strains of Aspergillus fumigatus. Z Naturforschung C 9(10):384–393

    Article  Google Scholar 

  • Gill R, Harbottle M, Smith J, Thornton S (2014) Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere 107:31–42. https://doi.org/10.1016/j.chemosphere.2014.03.019

    CAS  Article  Google Scholar 

  • Gonzalez G, Herrera G, Garcia M, Peña M (2001) Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Biores Technol 80:137–142. https://doi.org/10.1016/S0960-8524(01)00076-1

    CAS  Article  Google Scholar 

  • Guo S, Fan R, Li T, Hartog N, Li F, Yang X (2014) Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil. Chemosphere 109:226–233. https://doi.org/10.1016/j.chemosphere.2014.02.007

    CAS  Article  Google Scholar 

  • Gupta S, Ashrith G, Chandra D, Gupta AK, Finkel KW, Guntupalli JS (2008) Acute phenol poisoning: a life-threatening hazard of chronic pain relief. ClinToxicol (Phila) 46:250–253

    CAS  Article  Google Scholar 

  • Hasan S, Jabeen S (2015) Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. BiotechnolBiotechnol Equip 29:45–53

    CAS  Article  Google Scholar 

  • Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F (1992) Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Appl Microbiol Biotechnol 37:252–259

    CAS  Article  Google Scholar 

  • Hristov A (1997) Change in the processes of microbial respirationin Black Sea ecosystem in the presence of phenol. CR Acad Bulg Sci 50:101–104

    Google Scholar 

  • Jobin L, Namour P (2017) Bioremediation in water environment. Controlled electro-stimulation of organic matter self-purification in aquatic environment. Sci Res 7:813–852

    CAS  Google Scholar 

  • Kumar A, Kumar S, Kumar S (2005) Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem Eng J 22:151–159

    CAS  Article  Google Scholar 

  • Kumar S, Mishra VK, Kumar U, Kumar A, Varghese S (2013) Biodegradation of phenol by bacterial strains and their catalytic ability. Int J Agric Env Biotech 6:108–115

    Google Scholar 

  • Kwon KH, Yeom SH (2009) Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. Bioproc Biosyst Eng 32:435–442

    CAS  Article  Google Scholar 

  • Leonard D, Lindley ND (1998) Carbon and energy flux constraints in continuous cultures of Alcaligenes eutrophus grown on phenol. Microbiol 144:241–248

    CAS  Article  Google Scholar 

  • Li Q, Kang C, Zhang C (2005) Wastewater produced from an oilfield and continuous treatment with an oil-degrading bacterium. Process Biochem 40:873–877

    Article  Google Scholar 

  • Lillis L, Clipson N, Doyle E (2010) Quantification of catechol dioxygenase gene expression in soil during degradation of 2,4-dichlorophenol. FEMS MicrobiolEcol 73:363–369

    CAS  Google Scholar 

  • Liu H, Tong S, Chen N, Liu Y, Feng C, Hu Q (2015) Effect of electro-stimulation on activity of heterotrophic denitrifying bacteria and denitrification performance. Bioresour Technol 196:123–128

    CAS  Article  Google Scholar 

  • Mahiudddin M, Fakhruddin ANM, Al-Mahin A (2012) Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiol. https://doi.org/10.5402/2012/741820

    Article  Google Scholar 

  • Moghiseh Z, Rezaee A, Dehghani S, Esrafili A (2019) Microbial electrochemical system for the phenol degradation using alternating current: metabolic pathway study. Bioelectrochem. https://doi.org/10.1016/j.bioelechem.2018.12.002

    Article  Google Scholar 

  • Nakazawa T, Nakazawa A (1970) Pyrocatechase (Pseudomonas). Methods Enzymol 17:518–522

    Article  Google Scholar 

  • Olajire AA, Essien JP (2014) Aerobic degradation of petroleum components by microbial consortia. J Pet Environ Biotechnol 5:195. https://doi.org/10.4172/2157-7463.1000195

    CAS  Article  Google Scholar 

  • Oprea F, Sandulescu M (2006) Phenol removal from wastewater and sour water using ion exchange adsorption. Environ Eng Manag J 5:1051–1058

    CAS  Article  Google Scholar 

  • Pavitt AS, Bylaska EJ, Tratnyek PG (2017) Oxidation potentials of phenols and anilines: correlation analysis of electrochemical and theoretical values. Electron Suppl Mater Environ Sci Processes Impacts 3:12

    Google Scholar 

  • Powlowski J, Shingler V (1994) Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF 600. Biodegradation 5:219–236

    CAS  Article  Google Scholar 

  • Seker S, Beyenal H, Salih B, Tomas A (1997) Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Appl Microbiol Biotechnol 47:610–614

    CAS  Article  Google Scholar 

  • Soto ML, Moure A, Domínguez H, Parajó JC (2011) Recovery, concentration and purification of phenolic compounds by adsorption: a review. J Food Eng 105:1–27. https://doi.org/10.1016/j.jfoodeng.2011.02.010

    CAS  Article  Google Scholar 

  • Sridevi V, Chandana Lakshmi MVV, Manasa M, Sravani M (2012) Metabolic pathways for the biodegradation of phenol. Int J Eng Sci Adv Technol 2:695–705

    Google Scholar 

  • Víctor-Ortega MD, Ochando-Pulido JM, Martínez Férez A (2016) Equilibrium studies on phenol removal from industrial wastewater through polymeric resins. Chem Eng Trans 47:253–258

    Google Scholar 

  • Vijayagopal V, Viruthagiri T (2005) Batch kinetic studies in phenol biodegradation and comparison. Ind J Biotechnol 4:565–567

    CAS  Google Scholar 

  • Wang CL, You SL, Wang SL (2006) Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source. Process Biochem 41:1594–1601

    CAS  Article  Google Scholar 

  • Zhou Lean, Yan Xuejun, Yan Yuqing, Li Tian, An Jingkun, Liao Chengmei, Li Nan, Wang Xi (2019) Electrode potential regulates phenol degradation pathways in oxygen-diffused microbial electrochemical system. Chem Eng J 381:122663. https://doi.org/10.1016/j.cej.2019.122663(in press)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fund for Scientific Research, Republic of Bulgaria, Grant DN 17/4, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Beschkov.

Ethics declarations

Conflict of interest

The authors of this paper declare there were no conflict of interest during its work and preparation.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beschkov, V., Alexieva, Z., Parvanova-Mancheva, T. et al. Phenol biodegradation by the strain Pseudomonas putida affected by constant electric field. Int. J. Environ. Sci. Technol. 17, 1929–1936 (2020). https://doi.org/10.1007/s13762-019-02591-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02591-1

Keywords

  • Bioelectrochemistry
  • Enzyme activity
  • Stimulation
  • Wastewater treatment