Skip to main content
Log in

A prolonged evaluation of air contamination level with CO2 in a college student’s laboratory using nanosized MgO

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Three nanocrystalline eco-friendly MgO samples, as pure and modified with 1% (wt/wt) F or K2O at 600 °C, with high surface area and mesoporous nature were prepared by a simple sonochemical process. The three samples were characterized by XRD, surface area, porosity and TEM techniques. These samples were kept in contact with the atmosphere in the middle of a student’s organic chemistry laboratory and were examined toward capturing the ambient CO2 molecules through continuous exposure for a period of 8 weeks. The capturing capacity of these samples was shown to be in the following order: MgO > MgO-1%F > MgO-1%K2O. After 8 weeks, the amount captured by MgO was 346.2 \( {\text{mg}}_{{{\text{CO}}_{2} }} \,{\text{g}}^{ - 1} \), while MgO-1%F captured 311.4 \( {\text{mg}}_{{{\text{CO}}_{2} }} \,{\text{g}}^{ - 1} \), and finally MgO-1%K2O had the lowest capturing capacity of 252.9 \( {\text{mg}}_{{{\text{CO}}_{2} }} \,{\text{g}}^{ - 1} \). The obtained results showed that our samples are characterized by prolonged activity and reactivity toward the capturing of ambient CO2 molecules. Another series of experiments were carried out by passing pure CO2 gas (instead of the atmospheric CO2) over such samples, inside a glass cubic chamber, for 1 week. The results showed a similar trend in the TG desorption and TPD curves of pure CO2 as those recorded in ambient atmosphere. Values of the molar enthalpy change (ΔH) for CO2 desorption, corresponding to the two steps recorded for each sample in all durations, were calculated and were in agreement with those published formerly. Deconvolution of the IR-broad band, between 1800 and 1200 cm−1, revealed the presence of different types of basic sites on the surface of these samples under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asadi-Sangachini Z, Galangash MM, Younesi H, Nowrouzi M (2019) The feasibility of cost-effective manufacturing activated carbon derived from walnut shells for large scale CO2 capture. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-05842-3

    Article  Google Scholar 

  • Azimi B, Tahmasebpoor M, Sanchez-Jimenez PE, Perejon A, Valverde JM (2019) Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents. Chem Eng J 358:679–690

    CAS  Google Scholar 

  • Bhagiyalakshmi M, Hemalatha P, Ganesh M, Mei PM, Jang HT (2011) A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture. Fuel 90:1662–1667

    CAS  Google Scholar 

  • Bhatta LKG, Subramanyam S, Chengala MD, Olivera S, Venkatesh K (2015) Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. J Clean Prod 103:171–196

    CAS  Google Scholar 

  • Chen W, Zong Y, Zhou Y, Lu W, Zhang Y, Qian J (2019) The nature of MgO precursor decomposition and pore-forming in hard-templating of porous carbon derived from cotton. Colloids Surf A 571:160–167

    CAS  Google Scholar 

  • Coenen K, Gallucci F, Mezari B, Hensen E, van Sint Annaland M (2018) An in situ IR study on the adsorption of CO2 and H2O on hydrotalcites. J CO2 Util 24:228–239

    CAS  Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall Publisher, Englewood Cliffs

    Google Scholar 

  • Devaraja PB, Avadhani DN, Prashantha SC, Nagabhushana H, Sharma SC, Nagabhushana BM, Nagaswarupa HP (2014) Synthesis, structural and luminescence studies of magnesium oxide. Spectrochim Acta Part A Mol Biomol Spectrosc 118:847–851

    CAS  Google Scholar 

  • Díez VK, Apesteguía CR, Di Cosimo JI (2006) Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts. J Catal 240:235–244

    Google Scholar 

  • El-Nahas S, Abdelkader A, Halawy SA, Mohamed MA (2017) Nanocrystalline MgO samples (11.5 and 12.6 nm) derived from two different precursors: characterization and catalytic activity. J Therm Anal Calorim 129:1313–1322

    CAS  Google Scholar 

  • Elvira G-B, Francisco G-C, Víctor S-M, Alberto M-LR (2017) MgO-based adsorbents for CO2 adsorption: influence of structural and textural properties on the CO2 adsorption performance. J Environ Sci 57:418–428

    Google Scholar 

  • Gao W, Zhou T, Wang Q (2018) Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions. Chem Eng J 336:710–720

    CAS  Google Scholar 

  • Gregg SJ, Ramsay JD (1970) Adsorption of carbon dioxide by magnesia studied by use of infrared and isotherm measurements. J Chem SOC (A) 17:2784–2787

    Google Scholar 

  • Guo Y, Tan C, Sun J, Li W, Zhang J, Zhao C (2019) Biomass ash stabilized MgO adsorbents for CO2 capture application. Fuel 259:116298

    Google Scholar 

  • Ho K, Jin S, Zhong M, Vu A-T, Lee C-H (2017) Sorption capacity and stability of mesoporous magnesium oxide in post-combustion CO2 capture. Mater Chem Phys 198:154–161

    CAS  Google Scholar 

  • Houri D, Kanazawa Y, Morioka I, Matsumoto K (2009) Indoor air quality of Tottori University lecture rooms and measures for decreasing carbon dioxide concentrations. Yonago Acta Med 52:77–84

    CAS  Google Scholar 

  • Hu Y, Liu W, Yang Y, Qu M, Li H (2019) CO2 capture by Li4SiO4 sorbents and their applications: current developments and new trends. Chem Eng J 359:604–625

    CAS  Google Scholar 

  • Iwan A, Stephenson H, Ketchie WC, Lapkin AA (2009) High temperature sequestration of CO2 using lithium zirconates. Chem Eng J 146:249–258

    CAS  Google Scholar 

  • Jin S, Ho K, Lee C-H (2018) Facile synthesis of hierarchically porous MgO sorbent doped with CaCO3 for fast CO2 capture in rapid intermediate temperature swing sorption. Chem Eng J 334:1605–1613

    CAS  Google Scholar 

  • Jin S, Ko K-J, Song Y-G, Lee K, Lee C-H (2019) Fabrication and kinetic study of spherical MgO agglomerates via water-in-oil method for pre-combustion CO2 capture. Chem Eng J 359:285–297

    CAS  Google Scholar 

  • Kodasma R, Fermoso J, Sanna A (2019) Li-LSX-zeolite evaluation for post-combustion CO2 capture. Chem Eng J 358:1351–1362

    CAS  Google Scholar 

  • Kuang M, Shang Y, Yang G, Liu B, Yang B (2019) Facile synthesis of hollow mesoporous MgO spheres via spray-drying with improved adsorption capacity for Pb(II) and Cd(II). Environ Sci Pollut Res 26:18825–18833

    CAS  Google Scholar 

  • Kubo T, Nakahira A (2008) Local structure of TiO2-derived nanotubes prepared by the hydrothermal process. J Phys Chem C 112:1658–1662

    CAS  Google Scholar 

  • Li L, Wen X, Fu X, Wang F, Zhao N, Xiao F, Wei W, Sun Y (2010) MgO/Al2O3 sorbent for CO2 capture. Energy Fuels 24:5773–5780

    CAS  Google Scholar 

  • Li R, Chen G, Dong G, Sun X (2014) Controllable synthesis of nanostructured TiO2 by CTAB assisted hydrothermal route. New J Chem 38:4684–4689

    CAS  Google Scholar 

  • Li H, Hu Y, Chen H, Qu M (2019) Porous spherical calcium aluminate-supported CaO-based pellets manufactured via biomass-templated extrusion–spheronization technique for cyclic CO2 capture. Environ Sci Pollut Res 26:21972–21982

    CAS  Google Scholar 

  • Lide DR (2004) CRC handbook of chemistry and physics, 85th edn. CRC Press, New York

    Google Scholar 

  • Liu L, Zhao C, Xu J, Li Y (2015) Integrated CO2 capture and photocatalytic conversion by a hybrid adsorbent/photocatalyst material. Appl Catal B Environ 179:489–499

    CAS  Google Scholar 

  • Londoño-Restrepo SM, Jeronimo-Cruz R, Millán-Malo BM, Rivera-Muñoz EM, Rodriguez García ME (2019) Efect of the nano crystal size on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci Rep 9:5915. https://doi.org/10.1038/s41598-019-42269-9

    Article  CAS  Google Scholar 

  • Madden D, Curtin T (2016) Carbon dioxide capture with amino-functionalised zeolite-β: a temperature programmed desorption study under dry and humid conditions. Microporous Mesoporous Mater 228:310–317

    CAS  Google Scholar 

  • Mageshwari K, Mali SS, Sathyamoorthy R, Patil PS (2013) Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technol 249:456–462

    CAS  Google Scholar 

  • Mashayekh-Salehi A, Moussavi G, Yaghmaeian K (2017) Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant. Chem Eng J 310:157–169

    CAS  Google Scholar 

  • Mekhemer GAH, Halawy SA, Mohamed MA, Zaki MI (2004) Qualitative and quantitative assessments of acid and base sites exposed on polycrystalline MgO surfaces: thermogravimetric, calorimetric, and in-situ FTIR spectroscopic study combination. J Phys Chem B 108:13379–13386

    CAS  Google Scholar 

  • Mekhemer GAH, Halawy SA, Mohamed MA, Zaki MI (2005) Ketonization of acetic acid vapour over polycrystalline magnesia: in situ Fourier transform infrared spectroscopy and kinetic studies. J Catal 230:109–122

    CAS  Google Scholar 

  • Mohammad NK, Ghaemi A, Tahvildari K (2019) Hydroxide modified activated alumina as an adsorbent for CO2 adsorption: experimental and modeling. Int J Greenh Gas Control 88:24–37

    CAS  Google Scholar 

  • Muscatiello N, McCarthy A, Kielb C, Hsu W-H, Hwang S-A, Lin S (2015) Classroom conditions and CO2 concentrations and teacher health symptom reporting in 10 New York State Schools. Indoor Air 25:157–167

    CAS  Google Scholar 

  • Nakahira A, Kubo T, Yamasaki Y (2010) Microstructural control of mesoporous bulk composed of TiO2-derived titanate nanotubes. ACS Appl Mater Interfaces 2:1136–1140

    CAS  Google Scholar 

  • Park J, Lee L, Byun H, Ham S, Lee I, Park J, Rhie K, Lee Y, Yeom J, Tsai P, Yoon C (2014) A study of the volatile organic compound emissions at the stacks of laboratory fume hoods in a university campus. J Clean Prod 66:10–18

    CAS  Google Scholar 

  • Permentier K, Vercammen S, Soetaert S, Schellemans C (2017) Carbon dioxide poisoning: a literature review of an often forgotten cause of intoxication in the emergency department. Int J Emerg Med 10:14–18. https://doi.org/10.1186/s12245-017-0142-y

    Article  Google Scholar 

  • Pighini C, Belin T, Mijoin J, Magnoux P, Costentin G, Lauron-Pernot H (2011) Microcalorimetric and thermodynamic studies of CO2 and methanol adsorption on magnesium oxide. Appl Surf Sci 257:6952–6962

    CAS  Google Scholar 

  • Ramadass K, Singh G, Lakhi KS, Benzigar MR, Yang J-H, Kim S, Almajid AM, Belperio T, Vinu A (2019) Halloysite nanotubes: novel and eco-friendly adsorbents for high pressure CO2 capture. Microporous Mesoporous Mater 277:229–236

    CAS  Google Scholar 

  • Rao L, Ma R, Liu S, Wang L, Wu Z, Yang J, Hu X (2019) Nitrogen enriched porous carbons from d-glucose with excellent CO2 capture performance. Chem Eng J 362:794–801

    CAS  Google Scholar 

  • Razali NYY, Latif MT, Dominick D, Mohamad N, Sulaiman FR, Srithawirat T (2015) Concentration of particulate matter, CO and CO2 in selected schools in Malaysia. Build Environ 87:108–116

    Google Scholar 

  • Rodríguez-Mosqueda R, Pfeiffer H (2013) High CO2 capture in sodium metasilicate (Na2SiO3) at low temperatures (30–60°C) through the CO2-H2O chemisorption process. J Phys Chem C 117:13452–13461

    Google Scholar 

  • Saad F, Comparot JD, Brahmi R, Bensitel M, Pirault-Roy L (2017) Influence of acid-base properties of the support on the catalytic performances of Pt-based catalysts in a gas phase hydrogenation of acetonitrile. Appl Catal A Gen 544:1–9

    CAS  Google Scholar 

  • Science alert (2019). https://www.sciencealert.com/it-s-official-atmospheric-co2-just-exceeded-415-ppm-for-first-time-in-human-history. Accessed 25 June 2019

  • Shendell DG, Prill R, Fisk WJ, Apte MG, Blake D, Faulkner D (2004) Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air 14:333–341

    CAS  Google Scholar 

  • Shrirama S, Ramamurthya K, Ramakrishnan S (2019) Effect of occupant-induced indoor CO2 concentration and bioeffluents on human physiology using a spirometric test. Build Environ 149:58–67

    Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    CAS  Google Scholar 

  • Singh G, Lakhi KS, Sil S, Bhosale SV, Kim I, Albahily K, Vinu A (2019) Biomass derived porous carbon for CO2 capture. Carbon 148:164–186

    CAS  Google Scholar 

  • Slostowski C, Marre S, Dagault P, Babot O, Toupance T, Aymonier C (2017) CeO2 nanopowders as solid sorbents for efficient CO2 capture/release processes. J CO2 Util 20:52–58

    CAS  Google Scholar 

  • Soltani RDC, Safari M, Mashayekhi M (2016) Sonocatalyzed decolorization of synthetic textile wastewater using sonochemically synthesized MgO nanostructures. Ultrason Sonochem 30:123–131

    Google Scholar 

  • Sun H, Wang J, Zhao J, Shen B, Shi J, Huang J, Wu C (2019) Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion. Appl Catal B Environ 244:63–75

    CAS  Google Scholar 

  • Thouchprasitchai N, Pintuyothin N, Pongstabodee S (2018) Optimization of CO2 adsorption capacity and cyclical adsorption/desorption on tetraethylene pentamine-supported surface-modified hydrotalcite. J Environ Sci 65:293–305

    Google Scholar 

  • Ugranli T, Toprak M, Gursoy G, Cimrin AH, Sofuoglu SC (2015) Indoor environmental quality in chemistry and chemical engineering laboratories at Izmir Institute of Technology. Atmos Pollut Res 6:147–153

    CAS  Google Scholar 

  • Vu A-T, Park Y, Jeon PR, Lee C-H (2014) Mesoporous MgO sorbent promoted with KNO3 for CO2 capture at intermediate temperatures. Chem Eng J 258:254–264

    CAS  Google Scholar 

  • Vu A-T, Ho K, Jin S, Lee C-H (2016) Double sodium salt-promoted mesoporous MgO sorbent with high CO2 sorption capacity at intermediate temperatures under dry and wet conditions. Chem Eng J 291:161–173

    CAS  Google Scholar 

  • Wang K, Zhao P, Guo X, Li Y, Han D, Chao Y (2014) Enhancement of reactivity in Li4SiO4 based sorbents from the nano-sized rice husk ash for high-temperature CO2 capture. Energy Convers Manag 81:447–454

    CAS  Google Scholar 

  • World Health Organization (2014) Climate risks from CO2 and short-lived climate pollutants. https://www.who.int/sustainable-development/housing/health-risks/climate-pollutants/en/

  • Wu G, Wang X, Chen B, Li J, Zhao N, Wei W, Sun Y (2007) Fluorine-modified mesoporous Mg–Al mixed oxides: mild and stable base catalysts for O-methylation of phenol with dimethyl carbonate. Appl Catal A Gen 329:106–111

    CAS  Google Scholar 

  • Yanase I, Konno S, Kobayashi H (2018) Reversible CO2 capture by ZnO slurry leading to formation of fine ZnO particles. Adv Powder Technol 29:1239–1245

    CAS  Google Scholar 

  • Yang N, Ning P, Li K, Wang J (2018) MgO-based adsorbent achieved from magnesite for CO2 capture in simulate wet flue gas. J Taiwan Inst Chem Eng 86:73–80

    CAS  Google Scholar 

  • Yau YH, Chew BT, Saifullah AZA (2012) Studies on the indoor air quality of Pharmaceutical Laboratories in Malaysia. Int J Sustain Built Environ 1:110–124

    CAS  Google Scholar 

  • Yoshikawa K, Sato H, Kaneeda M, Kondo JN (2014) Synthesis and analysis of CO2 adsorbents based on cerium oxide. J CO2 Util 8:34–38

    CAS  Google Scholar 

  • Zhang Z, Hu X, Wang Y, Hu S, Xiang J, Li C, Chen G, Liu Q, Wei T, Dong D (2019) Regulation the reaction intermediates in methanation reactions via modification of nickel catalysts with strong base. Fuel 237:566–579

    CAS  Google Scholar 

  • Zhao X, Yang H, Wu P, Huang X, Wan X (2019) The preparation of MgO nanopowders synthesized via an improved polyacrylamide gel method. RSC Adv 9:14893–14898

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Charlie Farrell and Ahmed I. Osman from Queen’s University, Belfast (The UK) for the proof-reading of this manuscript.

Funding

This research is not funded or aided by any other division outside Nanocomposite Catalysts Lab.—SVU

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Halawy.

Ethics declarations

Conflict of interest

The authors of this work declare that no conflict of interest.

Additional information

Editorial responsibility: Shahid Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halawy, S.A., Mohamed, M.A. & El-Nahas, S. A prolonged evaluation of air contamination level with CO2 in a college student’s laboratory using nanosized MgO. Int. J. Environ. Sci. Technol. 17, 1551–1566 (2020). https://doi.org/10.1007/s13762-019-02584-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02584-0

Keywords

Navigation