Low-density open-cell flexible polyolefin foams as efficient materials for oil absorption: influence of tortuosity on oil absorption

Abstract

The devastating effects of oil spills on the ecosystems must be minimized by looking for effective solutions which offer a fast response to them. This work aimed at characterizing the oil-absorption capacity of flexible low-density open-cell foams based on polyolefins with different levels of tortuosity by comparing it to the one displayed by a commercial flexible open-cell polyurethane foam. The results showed that the tortuosity played a critical role in this property, absorbing the open-cell foams with low tortuosity up to 3 times more oil than the ones with high tortuosity. Oil absorptions as considerable as 43 g of oil per gram of foam were obtained, absorbing these foams up to 3.76 times more oil than the open-cell PU foam used as the reference. The hydrophobic character of these foams has also been characterized obtaining negligible water absorptions for the open-cell polyolefin-based materials, showing besides excellent oil–water selectivity. Finally, the reusability of the foams has been analyzed by using two methodologies: mechanical tests at low strain rates and by performing successive oil-absorption tests. The results indicated that open-cell EVA-based foams can be reused at least 50 times, whereas the open-cell LDPE-based foams tended to collapse. This study has proven that open-cell EVA-based foams with low tortuosity can be a potential alternative to be used in oil spill remediation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S (2003) Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 10:159–170. https://doi.org/10.1023/A:1027484117065

    CAS  Article  Google Scholar 

  2. Allen AA, Ferek RJ (1993) Advantages and disadvantages of burning spilled oil. Int Oil Spill Proc 1:765–772. https://doi.org/10.7901/2169-3358-1993-1-765

    Article  Google Scholar 

  3. Calcagnile P, Fragouli D, Bayer IS, Anyfantis GC, Martiradonna L, Cozzoli PD, Cingolani R, Athanassiou A (2012) Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6:5413–5419. https://doi.org/10.1021/nn3012948

    CAS  Article  Google Scholar 

  4. Choi HM, Cloud RM (1992) Natural sorbents in oil spill cleanup. Environ Sci Technol 26:772–776. https://doi.org/10.1021/es00028a016

    CAS  Article  Google Scholar 

  5. Cunningham A, Hilyard NC (1994) Low density cellular plastics: physical basis of behavior. Chapman and Hall, London

    Google Scholar 

  6. Eaves D (2004) Handbook of polymer foams. Rapra Technology Limited, Shrewsbury

    Google Scholar 

  7. Gibson LJ, Ashby MF (1995) Cellular solids: structure and properties, 2nd edn. Pergamon, Oxford

    Google Scholar 

  8. Hamdi O, Mighri F, Rodrigue D (2018) Optimization of the cellular morphology of biaxially stretched thin polyethylene foams produced by extrusion film blowing. Cell Polym 13:153–168. https://doi.org/10.1177/0262489318797517

    CAS  Article  Google Scholar 

  9. ITOPF Ltd: “Oil Tanker Spill Statistics 2017” (London, United Kingdom). https://www.itopf.org/fileadmin/data/Photos/Statistics/Oil_Spill_Stats_2017_web.pdf. Accessed Jan 2018

  10. Klempner D, Frisch KC (1992) Handbook of polymeric foams and foam technology. Hanser Publishers, Munich

    Google Scholar 

  11. Klempner D, Sendijarevic V (2004) Handbook of polymeric foams and foam technology, 2nd edn. Hanser Publishers, Munich

    Google Scholar 

  12. Kota KA, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil-water separation. Nat Commun 3:1025. https://doi.org/10.1038/ncomm2027

    Article  Google Scholar 

  13. Lessard RR, DeMarco G (2000) The significance of oil spill dispersants. Spill Sci Technol B 6:59–68. https://doi.org/10.1016/S1353-2561(99)00061-4

    CAS  Article  Google Scholar 

  14. Li H, Liu L, Yang F (2013) Oleophilic polyurethane foams for oil spill cleanup. Procedia Environ Sci 18:528–533. https://doi.org/10.1016/j.proenv.2013.04.071

    CAS  Article  Google Scholar 

  15. Liu Y, Ma J, Wu T, Wang X, Huang G, Liu Y, Qiu H, Li Y, Wang W, Gao J (2013) Cost effective reduced graphene oxide coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl Mater Int 5:10018–10026. https://doi.org/10.1021/am4024252

    CAS  Article  Google Scholar 

  16. Montagna PA, Baguley JG, Cooksey C, Hartwell I, Hyde LJ, Hyland JL, Kalke RD, Kracker LM, Reuscher Rhodes ACE (2013) Deep-sea benthic footprint of the deepwater horizon blowout. PLoS ONE 8:e70540. https://doi.org/10.1371/journal.pone.0070540

    CAS  Article  Google Scholar 

  17. Pinto J, Athanassiou A, Fragouli D (2016) Effect of the porous structure of polymer foams on the remediation of oil spills. J Phys D Appl Phys 49:145601. https://doi.org/10.1088/0022-3727/49/14/145601

    CAS  Article  Google Scholar 

  18. Pinto J, Heredia-Guerrero JA, Athanassiou A, Fragouli D (2017) Reusable nanocomposite-coated polyurethane foams for the remediation of oil spills. Int J Environ Sci Technol 14:2055–2066. https://doi.org/10.1007/s13762-017-1310-6

    CAS  Article  Google Scholar 

  19. Pintor AMA, Ferreira CIA, Pereira JC, Correia P, Silva SP, Vilar VJP, Botelho CMS, Boaventura RAR (2012) Use of cork powder and granules for adsorption of pollutants: a review. Water Res 46:3152–3166. https://doi.org/10.1016/j.watres.2012.03.048

    CAS  Article  Google Scholar 

  20. Rengasamy RS, Das D, Praba Karan C (2011) Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazad Mater 186:526–532. https://doi.org/10.1016/j.jhazmat.2010.11.031

    CAS  Article  Google Scholar 

  21. Rizvi A, Chu RKM, Lee JH, Park CB (2014) Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene. ACS Appl Mater Int 6:21131–21140. https://doi.org/10.1021/am506006v

    CAS  Article  Google Scholar 

  22. Rodriguez-Perez MA (2005) Crosslinked polyolefin foams: production, structure, properties and applications. Adv Polym Sci 184:97–126. https://doi.org/10.1007/b136244

    CAS  Article  Google Scholar 

  23. Teas C, Kalligeros S, Zanikos F, Stournas S, Lois E, Anastopoulos G (2001) Investigation of the effectiveness of absorbent materials in oil spill clean up. Desalination 140:259–264. https://doi.org/10.1016/S0011-9164(01)00375-7

    CAS  Article  Google Scholar 

  24. Wang CF, Lin SJ (2013) Robust superhydrophobic/superolephilic sponge for effective continuous absorption and expulsion of oil pollutants from water. ACS Appl Mater Int 5:8861–8864. https://doi.org/10.1021/am403266v

    CAS  Article  Google Scholar 

  25. Wang P, Zou C, Zhong H (2012) The study of highly oil absorption polyurethane foam material and its application in the emergency disposal of hazardous chemicals. Adv Mater Res 518–523:847–853. https://doi.org/10.4028/www.scientific.net/AMR.518-523.847

    CAS  Article  Google Scholar 

  26. Wang J, Zheng Y, Wang A (2013) Coated kapok fiber for removal of spilled oil. Mar Pollut Bull 69:91–96. https://doi.org/10.1016/j.marpolbul.2013.01.007

    CAS  Article  Google Scholar 

  27. Wang S, Wang K, Pang Y, Li Y, Wu F, Wang S, Zheng W (2016) Open-cell propylene/polyolefin elastomer blend foams fabricated for reusable oil-sorption materials. J Appl Polym Sci 133:43812–43821. https://doi.org/10.1002/app.43812

    CAS  Article  Google Scholar 

  28. Wen Q, Di J, Jiang L, Yu J, Xu R (2013) Zeolite-coated mesh film for efficient oil-water separation. Chem Sci 4:591–595. https://doi.org/10.1039/C2SC21772D

    CAS  Article  Google Scholar 

  29. Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460. https://doi.org/10.1039/C3TA13397D

    CAS  Article  Google Scholar 

  30. Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013) Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superolephobicity for high efficiency oil/water separation. Adv Mater 25:4192–4198. https://doi.org/10.1002/adma.201301480

    CAS  Article  Google Scholar 

  31. Zhou X, Zhang Z, Xu X, Guo F, Zhu X, Men X, Ge B (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Int 5:7208–7214. https://doi.org/10.1021/am4015346

    CAS  Article  Google Scholar 

  32. Zhu Q, Chu Y, Wang Z, Chen N, Lin L, Liu F, Pan Q (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1:5386–5393. https://doi.org/10.1039/C3TA00125C

    CAS  Article  Google Scholar 

  33. Zhu Y, Wang D, Jiang L, Jin J (2014) Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater 6:e101. https://doi.org/10.1038/am.2014.23

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support from DI grant DI-15-07952 (E. Lopez-Gonzalez) from the Spanish Ministry of Economy, Industry, and Competitiveness and MINECO, FEDER, UE (MAT2015-69234-R) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Lopez-Gonzalez.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopez-Gonzalez, E., Saiz-Arroyo, C. & Rodriguez-Perez, M.A. Low-density open-cell flexible polyolefin foams as efficient materials for oil absorption: influence of tortuosity on oil absorption. Int. J. Environ. Sci. Technol. 17, 1663–1674 (2020). https://doi.org/10.1007/s13762-019-02576-0

Download citation

Keywords

  • Oil spill
  • Open-cell foam
  • Reusability
  • Oil–water selectivity