Skip to main content

Advertisement

Log in

Sunlight-driven organic phase change material-embedded nanofiller for latent heat solar energy storage

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Solar energy storage systems hold a key for those seeking for a potential solution of energy issues. The experimental work established in this investigation is based on a composite organic phase change material (PCM) comprised of a technical grade paraffin wax/nanofiller synthesized via ultrasonic dispersion. Various mass fractions of ZnO nanorods synthesized via thermal decomposition technique or silica-coated zinc oxide (SZR) prepared via hydrolysis route were used as a nanofiller embedded in PCM. PCM was applied in a vertical type pipe-in-pipe (PIP) thermal heat storage system connected with a flat plate solar collector where water is used as the heat transfer fluid (HTF). The mass flow rate of the HTF was selected (1.3 g/s) according to the experimental results. The solar intensity data showed the solar collector energy gained was around 170 W, and it was related to the daytime. Results showed the heat transfer rate was affected by the change in the nanofiller type and the mass fraction. Finally, an increase in the heat was gained from 7 to 140 kJ/min with increasing the nanofillers up to a certain limit. Almost 200% system enhancement is achieved for ZSR rather than pristine PW-PCM which makes the system attractive for water heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PCM:

Phase change material

PIP:

Pipe-in-pipe

PW:

Paraffin wax

ZR:

Uncoated ZnO nanorods

ZSR:

Coated ZnO nanorods with SiO2

SWH:

Solar water heating

HTF:

Heat transfer fluid

T a :

Air temperature (°C)

T ab :

Ambient temperature (°C)

T ω :

Charging temperature of PCM (°C)

T α :

Discharging temperature of PCM (°C)

\(T_{\text{wic}}\) :

Inlet collector water temperature (°C)

\(T_{\text{woc}}\) :

Outlet water temperature from the collector (°C)

T β :

Temperature gained from discharging PCM (°C)

\(\xi\) :

Collector efficiency (%)

η :

Overall efficiency from the PCM storing system (%)

\(Q_{\text{uc}}\) :

Useful heat obtained from collector (W)

\(Q_{\beta }\) :

Rate of useful heat gained from HTF (KJ/min)

\(Q_{\text{PCM}}\) :

Heat gained from PCM (KJ/min)

\(I_{\varepsilon }\) :

Intensity of solar radiation (W/m2)

\(A_{c}\) :

Area of collector absorber (m2)

Cp :

Specific heat capacity of water 4.18 kJ/kg K (Zelzouli et al. 2012

Cp :

Specific heat capacity of paraffin wax 2.1 kJ/kg K (Sharma et al. 2009)

\(m^{.}\) :

Water mass flow rate (kg/s)

TES:

Thermal energy storage

H:

Latent heat of fusion of paraffin wax 190 kJ/kg (Sharma et al. 2009)

References

  • Altohamy AA, Abd Rabbo MF, Sakr RY, Attia AA (2015) Effect of water based Al2O3 nanoparticle PCM on cool storage performance. Appl Therm Eng 84:331–338

    Article  CAS  Google Scholar 

  • Ashour EA, Tony MA, Purcell PJ (2014) Use of agriculture-based waste for basic dye sorption from aqueous solution: kinetics and isotherm studies. Am J Chem Eng 2(6):92–98

    Article  CAS  Google Scholar 

  • Canbazoglu S, Sahinaslan A, Ekmekyapar A, Akosy YG, Akarsu F (2005) Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water heating system. Energy Build 37:235–242

    Article  Google Scholar 

  • Chaichan MT, Kamel SH, Al-Ajeely AN (2015) Thermal conductivity enhancement by using nano-material in phase change material for latent heat thermal energy storage systems. Saussurea 5(6):48–55

    Google Scholar 

  • Chieruzzi M, Miliozzi A, Crescenzi T, Torre L, Kenny JM (2015) A new phase change material based on potassium nitrate with silica and alumina nanoparticles for thermal energy storage. Nanoscale Res Lett 10:273

    Article  Google Scholar 

  • Dwivedi VK, Tiwari P, Tiwari S (2016) Importance of phase change material (pcm) in solar thermal applications: a review. In: International conference on emerging trends in electrical, electronics and sustainable energy systems (ICETEESES–16), March 11–12

  • El-Khayat MM, Ameen EE (2010) Renewable energy in egypt—challenges and prospects. In: Thermal Issues in Emerging Technologies, Cairo, Egypt, December 19–22

  • Fang G, Chen Z, Li H (2010) Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chem Eng J 163:154–159

    Article  CAS  Google Scholar 

  • Fang X, Fan L, Ding Q, Wang X, Yao XL, Hou JF, Yu Z, Chen G, Hu Y, Cen K (2013) Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets. Energy Fuels 27(7):4041–4047

    Article  CAS  Google Scholar 

  • Farahat MA, Mousa MM, Mahmoud NH (2016) Solar distiller with flat plate collector and thermal storage. In: 17th international conference on applied mechanics and mechanical engineering, Military Technical College, Cairo, Egypt, pp 19–21

    Article  Google Scholar 

  • Goldemberga J, Coelh ST (2004) Renewable energy—traditional biomass vs. modern biomass. Energy Policy 32:711–714

    Article  Google Scholar 

  • Hajare VS, Gawali BS (2015) Experimental study of latent heat storage system using nano-mixed phase change material. Int J Eng Technol Manag Appl Sci 3(8):37–44

    Google Scholar 

  • Hajare VS, Narode AR, Gawali BS, Bamane SR (2014) Experimental investigation of enhancement in heat transfer using nano-mixed PCM. Int J Eng Res Technol 3(11):843–848

    Google Scholar 

  • Harikrishnan S, Deenadhayalan M, Kalaiselvam S (2014) Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application. Energy Convers Manage 86:864–872

    Article  CAS  Google Scholar 

  • Hematian A, Ajabshirchi Y, Behfar H, Ghahramani H (2012) Designing, construction and analysis of speed control system of the fan with PV feeding source in an air solar collector. Mod Appl Sci 6(1):136–144

    Google Scholar 

  • Ho CJ, Gao JY (2009) Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int Commun Heat Mass Transf 36:467–470

    Article  CAS  Google Scholar 

  • Karunamurthy K, Murugumohan K, Suresh S (2012) Use of Cuo nano-material for the improvement of thermal conductivity and performance of low temperature energy storage system of solar pond. Digest J Nanomater Biostruct 7(4):1833–1841

    Google Scholar 

  • Kaviarasu C, Prakash D (2016) Review on phase change materials with nanoparticle in engineering applications. J Eng Sci Technol Rev 9(4):26–386

    Article  CAS  Google Scholar 

  • Kaygusuz K, Sari A (2005) Thermal energy storage system using a technical grade paraffin wax as latent heat energy storage material. Energy Sources 27:1535–1546

    Article  CAS  Google Scholar 

  • Kurtbash I, Durmush A (2004) Efficiency and exergy analysis of a new solar air heater. Renew Energy 29(9):1489–1501

    Article  Google Scholar 

  • Lin C, Li Y (2009) Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater Chem Phys 113:334–337

    Article  CAS  Google Scholar 

  • Mallika AN, Reddy AR, Reddy KV (2015) Annealing effects on the structural and optical properties of ZnO nanoparticles with PVA and CA as chelating agents. J Adv Ceram 4(2):123–129

    Article  CAS  Google Scholar 

  • Mote VD, Purushotham Y, Dole BN (2102) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6(1):6–14. https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  • Muller K, Bugnicourt E, Latorre M, Jorda M, Sanz YE, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bolz U, Perez G, Jesdinszki M, Lindner M, Scheuerer Z, Castello S, Schmid M (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging automotive and solar energy fields. Nanomaterials 7(4):74

    Article  Google Scholar 

  • Narayanan S, Kardam SA, Kumar V, Bhardwaj N, Madhwal D, Shukla P, Kumar A, Verma A, Jain VK (2017) Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating. Resour Eff Technol 3(3):272–279

    Google Scholar 

  • Otanicar TP, Golden JS (2009) Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environ Sci Technol 43:6082–6087

    Article  CAS  Google Scholar 

  • Pise AT, Waghmare AV, Talandage VG (2013) Heat transfer enhancement by using nanomaterial in phase change material for latent heat thermal energy storage system. Asian J Eng Appl Technol 2(2):52–57

    Google Scholar 

  • Ramasamy M, Das M, An SN, Yi DK (2014) Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells. Int J Nanomed 9:3707–3718

    CAS  Google Scholar 

  • Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345

    Article  CAS  Google Scholar 

  • Skovajsa J, Kolacek M, Zalesak M (2017) Phase change material based accumulation panels in combination with renewable energy sources and thermoelectric cooling. Energies 10:152

    Article  Google Scholar 

  • Teng T, Yu C (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7:611

    Article  Google Scholar 

  • Tony MA, Tayeb A (2011) The use of solar energy in a low-cost drying system for solid waste management: concept, design and performance analysis. In: Eurasia waste management symposium, 14–16 November

  • Tony MA, Tayeb A (2016) Response surface regression model in optimization of alum sludge drying facility: solar-fenton’s reagent dewatering. Int J Chem Eng Appl 7(5):331–335

    CAS  Google Scholar 

  • Tony MA, Tayeb A, Zhao YQ (2016) An alternative arrangement for the alum sludge management: minimising waste with low-cost solar techniques. Am J Chem Eng 4(2):30–37

    Article  CAS  Google Scholar 

  • Wang J, Xie H, Xin Z, Li Y, Chen L (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–44

    Article  CAS  Google Scholar 

  • Wen BF, Wang X, Xu Y, Zhang D, Yang M (2011) The effect of encapsulation of nano zinc oxide with silica on the UV resistance of polypropylene. Polym Plast Technol Eng 50:1375–1382

    Article  CAS  Google Scholar 

  • Xu J, Shi S, Zhang X (2013) Structural and optical properties of (Al, K)-co-doped ZnO thin films deposited by a sol–gel technique. Mater Sci Semicond Process 16:732–737

    Article  CAS  Google Scholar 

  • Zelzouli K, Guizani A, Sebai R, Kerkeni C (2012) Solar thermal systems performances versus flat plate solar collectors connected in series. Engineering 4:881–893

    Article  Google Scholar 

  • Zeng RX, Wang W, Xiao Y, Zhang Q, Di H (2010) Thermal performance of phase change material energy storage floor for active solar water-heating system. Front Energy Power Eng Chin 4(2):185–191

    Article  Google Scholar 

Download references

Acknowledgements

There is no acknowledgment that the authors can include.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tony.

Additional information

Editorial responsibility M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tony, M.A., Mansour, S.A. Sunlight-driven organic phase change material-embedded nanofiller for latent heat solar energy storage. Int. J. Environ. Sci. Technol. 17, 709–720 (2020). https://doi.org/10.1007/s13762-019-02507-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02507-z

Keywords

Navigation