Skip to main content

Polycyclic aromatic hydrocarbons: soil pollution and remediation

Abstract

Soil is an important environmental matrix to support the life of all organisms directly or indirectly. Despite being the ultimate sink for all pollutants, it has been neglected for long, which has negatively affected the quality of the soil. Disposal of pollutants has resulted in changes in properties of soils and introduction of toxicity into it. The presence of heavy metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs) affects all forms of life since these chemicals have associated toxicity, mutagenicity, and carcinogenicity. PAHs are typical pollutants of soil which result in alteration in grain size, porosity and water-holding capacity of soil and affect diversity/population of microbes adversely. Significant changes in permeability, volume, plasticity, etc., are also brought about resulting in poor quality of contaminated soils. Considering the toxicity and global prevalence of PAHs, remediation of contaminated soils has become a challenge. Therefore, it is important to understand the detailed mechanism of physical, chemical or biological changes in soil. Simultaneously, it becomes pertinent to identify the environmentally sustainable treatment options for remediation of contaminated sites. Whereas physical and chemical treatment methods are either cost, chemical, or energy prohibitive, the biological treatment is emerging as an efficient and effective option which employs microorganisms for mitigation. Microorganisms are known for their enzyme-catalyzed catabolic activity when degradation/mineralization of a pollutant is aimed at and can prove useful in degradation of PAHs. Therefore, the present study reviews the effects of PAHs on soil properties, different remediation techniques and the role of microorganisms in remediating contaminated sites.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • Abed RMM, Al-Kharusi S, Al-Hinai M (2015) Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. Int Biodeterior Biodegrad 98:43–52

    CAS  Article  Google Scholar 

  • Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R (1995) Electrokinetic remediation: basics and technology status. J Hazard Mater 40(2):117–137

    CAS  Article  Google Scholar 

  • Agarwal T (2009) Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. J Hazard Mater 171(1–3):894–900

    CAS  Article  Google Scholar 

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Article  CAS  Google Scholar 

  • Aislabie J, Balks M, Astori N, Stevenson G, Symons R (1999) Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica. Chemosphere 39(13):2201–2207

    CAS  Article  Google Scholar 

  • Alcántara MT, Gómez J, Pazos M, Sanromán MA (2012) Electrokinetic remediation of lead and phenanthrene polluted soils. Geoderma 173–174:128–133

    Article  CAS  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego

    Google Scholar 

  • Alleman BC, Hinchee RE, Brenner RC, McCauley PT (1995) Bioventing PAH contamination at the Reilly Tar site. In: Hinchee RE, Miller RN, Johnson PC (eds) In-situ aeration: air sparging, bioventing, and related remediation processes. Battelle Press, Columbus, pp 473–482

    Google Scholar 

  • Arp HPH, Lundstedt S, Josefsson S, Cornelissen G, Enell A, Allard AS, Kleja DB (2014) Native Oxy-PAHs, N-PACs, and PAHs in Historically contaminated soils from Sweden, Belgium, and France: their soil-porewater partitioning behavior, bioaccumulation in Enchytraeus crypticus, and bioavailability. Environ Sci Technol 48(19):11187–11195

    CAS  Article  Google Scholar 

  • Atagana HI (2004) Bioremediation of creosote-contaminated soil in South Africa by landfarming. J Appl Microbiol 96:510–520

    CAS  Article  Google Scholar 

  • Baker RS, Tarmasiewicz D, Bierschenk JM, King J, Landler T, Sheppard D (2007) Completion of in situ thermal remediation of PAHs, PCP and dioxins at a former wood treatment facility. In: International conference on incineration and thermal treatment technologies, Orlando, Florida, US

  • Barra R, Peter Popp P, Roberto Quiroz R, Coretta Bauer C, Hernan Cid H, Tümpling W (2005) Persistent toxic substances in soils and waters along an altitudinal gradient in the Laja River Basin, Central Southern Chile. Chemosphere 58:905–915

    CAS  Article  Google Scholar 

  • Barrán-Berdón AL, González VG, Aboytes GP, Rodea-Palomares I, Carrillo-Chávez A, Gómez Ruiz H, Cuéllar BV (2012) Polycyclic aromatic hydrocarbons in soils from a brick manufacturing location in central Mexico. Rev Int Contam Ambie 28(4):277–288

    Google Scholar 

  • Bayoumi RA (2009) Bacterial bioremediation of polycyclic aromatic hydrocarbons in heavy oil contaminated soil. J Appl Sci Res 5(2):197–211

    Google Scholar 

  • Bogan BW, Trbovic V (2003) Effect of sequestration on PAH degradability with Fenton’s reagent: roles of total organic carbon, humin, and soil porosity. J Hazard Mater 100:285–300

    CAS  Article  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Article  Google Scholar 

  • Breedveld GD, Sparrevik M (2000) Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegradation 11:391–399

    CAS  Article  Google Scholar 

  • Brown GS, Barton LL, Thomson BM (2003) Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons. Waste Manag 23:737–740

    CAS  Article  Google Scholar 

  • Bucheli TD, Blum F, Desaules A, Gustafsson Ö (2004) Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56:1061–1076

    CAS  Article  Google Scholar 

  • Byss M, Elhottová D, Tříska J, Baldrian P (2008) Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Chemosphere 73(9):1518–1523

    CAS  Article  Google Scholar 

  • Cameselle C, Gouveia S (2019) Phytoremediation of mixed contaminated soil enhanced with electric current. J Hazard Mater 361:95–102

    CAS  Article  Google Scholar 

  • Campos VM, Merino I, Casado R, Pacios LF, Gómez L (2008) Review: Phytoremediation of organic pollutants. Span J Agric Res 6:38–47

    Article  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2080–2110

    Google Scholar 

  • Chaineau C, Rougeux G, Yepremian C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497

    CAS  Article  Google Scholar 

  • Chang HJ, Jou CJG, Lee CL (2011) Treatment of heavy oil contaminated sand by microwave energy. Environ Eng Sci 28:869–873

    CAS  Article  Google Scholar 

  • Chaudry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12(1):34–48

    Article  CAS  Google Scholar 

  • Chien YC (2012) Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy. J Hazard Mater 199:457–461

    Article  CAS  Google Scholar 

  • Chu SG, Liu H, Ma LL, Xu XB (2003) Polycyclic aromatic hydrocarbons in soil adjacent to highways in Beijing, People’s Republic of China. Bull Environ Contam Toxicol 70:972–977

    CAS  Article  Google Scholar 

  • Decesaro A, Rampel A, Machado TS, Thomé A, Reddy K, Margarites AC, Colla LM (2017) Bioremediation of soil contaminated with diesel and biodiesel fuel using biostimulation with microalgae biomass. J Environ Eng 143(4):04016091

    Article  CAS  Google Scholar 

  • Denis EH, Toney JL, Tarozo R, Anderson RS, Roach LD, Huang Y (2012) Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: validation using HPLC-fluorescence detection. Org Geochem 45:7–17

    CAS  Article  Google Scholar 

  • Devi NL, Yadav IC, Shihua Q, Dan Y, Zhang G, Raha P (2016) Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 144:493–502

    CAS  Article  Google Scholar 

  • Do SH, Jo JH, Jo YH, Lee HK, Kong SH (2009) Application of a peroxymonosulfate/cobalt (PMS/Co (II)) system to treat diesel-contaminated soil. Chemosphere 77:1127–1131

    CAS  Article  Google Scholar 

  • Do SH, Kwon YJ, Kong SH (2010) Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel-contaminated soil and sand. J Hazard Mater 182:933–936

    CAS  Article  Google Scholar 

  • Doong R, Lin Y (2003) Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Res 38(7):1733–1744

    Article  CAS  Google Scholar 

  • Downard J, Singh A, Bullard R, Jayarathne T, Rathnayake C, Simmons DL, Stone EA (2015) Uncontrolled combustion of shredded tires in a landfill—part 1: characterization of gaseous and particulate emissions. Atmos Environ 104:195–204

    CAS  Article  Google Scholar 

  • Falciglia P, Giustra M, Vagliasindi FG (2011) Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics. J Hazard Mater 185:392–400

    CAS  Article  Google Scholar 

  • Falciglia PP, Urso G, Vagliasindi FGA (2013) Microwave heating remediation of soils contaminated with diesel fuel. J Soils Sediments 13:1396–1407

    CAS  Article  Google Scholar 

  • Falciglia PP, Guidib GD, Catalfob A, Vagliasindia FGA (2017) Contaminant removal mechanisms in microwave heating remediation of PAH-contaminated soils. Chem Eng Trans 57:361–366

    Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    CAS  Article  Google Scholar 

  • Fernández-Luqueño F, López-Valdez F, Pérez-Morales C, García-Mayagoitia S, Sarabia-Castillo CR, Pérez-Ríos SR (2017) Enhancing decontamination of PAHs-polluted soils: role of organic and mineral amendments. In: Anjum N, Gill S, Tuteja N (eds) Enhancing cleanup of environmental pollutants. Springer, Cham

    Google Scholar 

  • Flotron V, Delteil C, Padellec Y, Camel V (2005) Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere 59:1427–1437

    CAS  Article  Google Scholar 

  • García Frutos FJ, Escolano O, García S, Babín M, Fernández MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183:806–813

    Article  CAS  Google Scholar 

  • García-Alonso S, Pérez-Pastor RM, Sevillano-Castaño ML, Escolano O, García-Frutos FJ (2008) Influence of particle size on the quality of PAH concentration measurements in a contaminated soil. Polycycl Aromat Compd 28(1):67–83. https://doi.org/10.1080/10406630701815253

    CAS  Article  Google Scholar 

  • García-Delgado C, Fresno T, Rodríguez-Santamaría JJ, Diaz E, Mohedano AF, Moreno-Jimenez E (2019) Co-application of activated carbon and compost to contaminated soils: toxic elements mobility and PAH degradation and availability. Int J Environ Sci Technol 16:1057–1068

    Article  CAS  Google Scholar 

  • Garon D, Sage L, Wouessidjewe D, Seigle-Murandi F (2004) Enhanced degradation of fluorine in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56:159–166

    CAS  Article  Google Scholar 

  • Germida J, Frick C, Farrell R (2002) Phytoremediation of oil-contaminated soils. Dev Soil Sci 28:169–186

    Google Scholar 

  • Goi A, Trapido M, Kulik N, Palmroth M, Tuhkanen T (2006) Ozonation and Fenton treatment for remediation of diesel fuel contaminated soil. Ozone Sci Eng 28:37–46

    CAS  Article  Google Scholar 

  • Gu J, Dong D, Kong L, Zheng Y, Li X (2012) Photocatalytic degradation of phenanthrene on soil surfaces in the presence of nanometer anatase TiO2 under UV-light. J Environ Sci 24(12):2122–2126

    CAS  Article  Google Scholar 

  • Gunther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33(2):203–215

    CAS  Article  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons: a review. J Hazard Mater 169:1–15

    CAS  Article  Google Scholar 

  • Haritash AK, Kaushik CP (2016) Degradation of low molecular weight polycyclic aromatic hydrocarbons by microorganisms isolated from contaminated soil. Int J Environ Sci 6:0976–4402

    Google Scholar 

  • Haussmann HJ (2012) Use of hazard indices for a theoretical evaluation of cigarette smoke composition. Chem Res Toxicol 25(4):794–810

    CAS  Article  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microb Ecol 51:363–373

    CAS  Article  Google Scholar 

  • Hinchee RE (1993) Bioventing of petroleum hydrocarbons. Handbook of bioremediation. CRC Press, Boca Raton

    Google Scholar 

  • Hinchee RE, Smith LA (1992) In situ thermal technologies for site remediation. CRC Press, Boca Raton

    Google Scholar 

  • Howard P, Meylan W, Aronson D, Stiteler W, Tunkel J, Comber M, Parkerton TF (2005) A new biodegradation prediction model specific to petroleum hydrocarbons. Environ Toxicol Chem 24:1847–1860

    CAS  Article  Google Scholar 

  • Hreniuc M, Coman M, Cioruţa B (2015) Consideration regarding the soil pollution with oil products in Sacel-Maramures. In: International conference of scientific paper AFASES, Brasov, 28–30

  • Huang D, Xu Q, Cheng J, Lu X, Zhang H (2012) Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils. Int J Electrochem Sci 7:4528–4544

    CAS  Google Scholar 

  • Ibrahim AM (2004) Soil pollution: origin, monitoring and remediation. Springer, Berlin

    Google Scholar 

  • Jonsson S, Persson Y, Frankki S, Lundstedt S, Bavel BV, Haglund P, Tysklind M (2006) Comparison of Fenton reagent and ozone oxidation of polycyclic aromatic hydrocarbon in aged contaminated soils. J Soil Sediment 6:208–214

    CAS  Article  Google Scholar 

  • Karaca O, Cameselle C, Reddy KR (2016) Electrokinetic removal of heavy metals from mine tailings and acid lake sediments from Can Basin, Turkey. Geotechnical special publication (273 GSP), pp 225–234

  • Kaushik CP, Haritash AK (2006) Polycyclic aromatic hydrocarbons (PAHs) and environmental health. Our Earth 3(3):1–7

    Google Scholar 

  • Kaushik CP, Sangwan P, Haritash AK (2012) Association of polycyclic aromatic hydrocarbons (PAHs) with different sizes of atmospheric particulate in Hisar City and its health aspects. Polycycl Aromat Compd 32(5):626–642

    CAS  Article  Google Scholar 

  • Khodadoust AP, Bagchi R, Suidan MT, Brenner RC, Sellers NG (2000) Removal of PAHs from highly contaminated soils found at prior manufactured gas operations. J Hazard Mater 80(1–3):159–174

    CAS  Article  Google Scholar 

  • Khomarbaghi Z, Shavandi M, Amoozegar MA, Dastgheib SMM (2019) Bacterial community dynamics during bioremediation of alkane- and PAHs-contaminated soil of Siri Island, Persian Gulf: a microcosm study. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-02198-y

  • Kiamarsi Z, Soleimani M, Nezami A, Kafi M (2018) Biodegradation of n-alkanes and polycyclic aromatic hydrocarbons using novel indigenous bacteria isolated from contaminated soils. Int J Environ Sci Technol 1(1):1–12

    Google Scholar 

  • Kim GB, Maruya KA, Lee RF, Lee JH, Koh CH, Tanabe S (1999) Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea. Mar Pollut Bull 38(1):7–15

    CAS  Article  Google Scholar 

  • Klamerus-Iwan A, Błońska E, Lasota J, Kalandyk A, Waligórski P (2015) Influence of oil contamination on physical and biological properties of forest soil after chainsaw use. Water Air Soil Pollut 226(11):389

    Article  CAS  Google Scholar 

  • Klánová J, Matykiewiczová N, Máčka Z, Prošek P, Láska K, Klán P (2008) Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environ Pollut 152:416–423

    Article  CAS  Google Scholar 

  • Kozak K, Ruman M, Kosek K, Karasiński G, Stachnik Ł, Polkowska Z (2017) Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of west Spitsbergen (Hornsund Fjord, Svalbard). Water 9:42

    Article  CAS  Google Scholar 

  • Krauss M, Wilcke W, Martius C, Bandeira A, Garcia M, Amelung W (2005) Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environ Pollut 135:143–154

    CAS  Article  Google Scholar 

  • Kuo YM, Lin TC, Tsai PJ, Lee WJ, Lin HY (2003) Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace. Chemosphere 51(4):313–319

    CAS  Article  Google Scholar 

  • Labud V, Garcia C, Hernandez T (2007) Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66:1863–1871

    CAS  Article  Google Scholar 

  • Lai CH, Li HC, Chen KS (2009) Source characterization and environment impact of open burning of rice straw residues on polycyclic aromatic hydrocarbons in agricultural county, Taiwan. J Environ Eng Manag 19(2):79–88

    CAS  Google Scholar 

  • Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546

    CAS  Article  Google Scholar 

  • Li D, Quan X, Zhang Y, Zhao Y (2008) Microwave-induced thermal treatment of petroleum hydrocarbon-contaminated soil. Soil Sediment Contam 17:486–496

    CAS  Article  Google Scholar 

  • Li X, Wang X, Ren ZJ, Zhang Y, Li N, Zhou Q (2015) Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere 141:62–70

    CAS  Article  Google Scholar 

  • Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull 109(1):14–45

    CAS  Article  Google Scholar 

  • Lipińska A, Kucharski J, Wyszkowska J (2014) The effect of polycyclic aromatic hydrocarbons on the structure of organotrophic bacteria and dehydrogenase activity in soil. Polycycl Aromat Compd 34(1):35–53

    Article  CAS  Google Scholar 

  • Liu R, Jadeja RN, Zhou Q, Liu Z (2012) Treatment and remediation of petroleum contaminated soils using selective ornamental plants. Environ Eng Sci 29:494–501

    CAS  Article  Google Scholar 

  • Lueking AD, Huang WL, Soderstrom-Schwarz S, Kim M, Weber WJ (2000) Relationship of soil organic matter characteristics to organic contaminant sequestration and bioavailability. J Environ Qual 29:317–323

    CAS  Article  Google Scholar 

  • Lyu Y, Zheng W, Zheng T, Tian Y (2014) Biodegradation of Polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS ONE 9(7):e101438

    Article  Google Scholar 

  • Mackay D, Shiu WY (1977) Aqueous solubility of polynuclear aromatic hydrocarbons. J Chem Eng 22:399–402

    CAS  Google Scholar 

  • Magi E, Bianco R, Ianni C, Carro MD (2002) Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environ Pollut 119:91–98

    CAS  Article  Google Scholar 

  • Mai B, Qi S, Zeng E, Yang Q, Hang G, Fu J, Sheng G, Peng P, Wang Z (2003) Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: assessment of input sources and transport pathways using compositional analysis. Environ Sci Technol 37:4855–4863

    CAS  Article  Google Scholar 

  • Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11(1–2):121–127

    Article  Google Scholar 

  • Mao J, Guan W (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agric Scand B Soil Plant Sci 66(5):399–405

    CAS  Google Scholar 

  • Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65:449–456

    CAS  Article  Google Scholar 

  • Masten SJ, Davies SHR (1997) Efficacy of in situ ozonation for the remediation of PAH contaminated soils. J Contam Hydrol 28:327–335

    CAS  Article  Google Scholar 

  • Mazzera D, Hayes T, Lowenthal D, Zielinska B (1999) Quantification of polycyclic aromatic hydrocarbons in soil at McMurdo Station, Antarctica. Sci Total Environ 229:65–71

    CAS  Article  Google Scholar 

  • McCarthy K, Walker L, Vigoren L, Bartel J (2004) Remediation of spilled petroleum hydrocarbons by in situ landfarming at an artic site. Cold Reg Sci Technol 40:31–39

    Article  Google Scholar 

  • McCready S, Slee DJ, Birch JF, Taylor SE (2000) The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Mar Pollut Bull 40:999–1006

    CAS  Article  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken

    Book  Google Scholar 

  • McRae C, Sun C, McMillan CF, Snape CE, Fallick AE (2000) Sourcing of fossil fuel-derived PAH in the environment. Polycycl Aromat Compd 20(1–4):97–109

    CAS  Article  Google Scholar 

  • Michele MM, Stanley PW, Guo LH, Wan YS, Donald M (1985) Relationships between octanol-water partition coefficient and aqueous solubility. Environ Sci Technol 19(6):522–529

    Article  Google Scholar 

  • Mielke HW, Wang G, Gonzales CR, Powel ET, Le B, Quach VN (2004) PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA. Environ Toxicol Pharmacol 18:243–247

    CAS  Article  Google Scholar 

  • Mishra S, Singh SN (2014) Biodegradation of benzo(a)pyrene mediated by catabolic enzymes of bacteria. Int J Environ Sci Technol 11:1571

    CAS  Article  Google Scholar 

  • Muckian L, Grant R, Clipson N, Doyle E (2009) Bacterial community dynamics during bioremediation of phenanthrene and fluoranthene amended soil. Int Biodeterior Biodegrad 63:52–56

    CAS  Article  Google Scholar 

  • Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut 132:1–11

    CAS  Article  Google Scholar 

  • Nam JJ, Song BH, Eom KC, Lee SH, Smith A (2003) Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. Chemosphere 50:1281–1289

    CAS  Article  Google Scholar 

  • Namkoong W, Hwang E, Park J, Choi J (2002) Bioremediation of diesel contaminated soil with composting. Environ Pollut 119:23–31

    CAS  Article  Google Scholar 

  • Nganje TN, Edet AE, Ekwere SJ (2007) Distribution of PAHs in surface soils from petroleum handling facilities in Calabar. Environ Monit Assess 130(1–3):27–34

    CAS  Article  Google Scholar 

  • Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy J, Slee D, Stevenson G, Naidu R (2014) Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: comparisons of concentration distribution, sources and potential toxicity. Ecotoxicol Environ Saf 104:339–348

    CAS  Article  Google Scholar 

  • Nieuwoudt C, Pieters R, Quinn LP, Kylin H, Borgen AR, Bouwman H (2011) Polycyclic aromatic hydrocarbons (PAHs) in soil and sediment from industrial, residential, and agricultural areas in central south Africa: an initial assessment. Soil Sediment Contam 20:188–204

    CAS  Article  Google Scholar 

  • O’Mahony MM, Dobson ADW, Barnes JD, Singleton I (2006) The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63:307–314

    Article  CAS  Google Scholar 

  • Oleszczuk P, Baran S (2005) Leaching of individual PAHs in soil varies with the amounts of sewage sludge applied and total organic carbon content. Pol J Environ Stud 14(4):491–500

    CAS  Google Scholar 

  • Pampanin DM, Sydnes MO (2013) Polycyclic aromatic hydrocarbons a constituent of petroleum: presence and influence in the aquatic environment. In: Kutcherov V, Kolesnikov A (eds) Hydrocarbon. Intech Open Ltd., London, UK. ISBN 978-953-51-0927-3

  • Pandey AK, Chaudhary P, Singh SB, Arora A, Kumar K, Chaudhry S, Nain L (2012) Deciphering the traits associated with PAH degradation by a novel Serratia marcesencs L-11 strain. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(5):755–765

    CAS  Article  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant liability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Pollut 137:187–197

    CAS  Article  Google Scholar 

  • Pathak H, Bhatnagar K, Jaroli DP (2011) Physico-chemical properties of petroleum polluted soil collected from Transport Nagar (Jaipur). Indian J Fundam Appl Life Sci 1(3):2231–6345

    Google Scholar 

  • Patnaik P (1999) A comprehensive guide to the properties of hazardous chemical substances, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Paudyn K, Rutter A, Rowe RK, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53:102–114

    Article  Google Scholar 

  • Pettersen H, Näf C, Broman D (1997) Impact of PAH outlets from an oil refinery on the receiving water area—sediment trap fluxes and multivariate statistical analysis. Mar Pollut Bull 34(2):85–95

    CAS  Article  Google Scholar 

  • Picado A, Nogueira A, Baeta-Hall L, Mendonça E, de Fátima Rodrigues M, do Céu Sàágua M, Martins A, Anselmo AM (2001) Landfarming in a PAH-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 36(9):1579–1588

    CAS  Article  Google Scholar 

  • Piña J, Merino J, Errazu AF, Bucalá V (2002) Thermal treatment of soils contaminated with gas oil: influence of soil composition and treatment temperature. J Hazard Mater 94:273–290

    Article  Google Scholar 

  • Plachá D, Raclavská H, Matýsek D, Rümmeli MH (2009) The polycyclic aromatic hydrocarbon concentrations in soils in the Region of Valasske Mezirici, the Czech Republic. Geochem Trans 10:12

    Article  CAS  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbon by Cladosporium sphaerospermum isolated from an aged (PAHs) contaminated soil. FEMS Microbiol Eco 51(1):71–78

    CAS  Article  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam 7(4):467–480

    CAS  Article  Google Scholar 

  • Rababah A, Matsuzawa S (2002a) Treatment system for solid matrix contaminated with fluoranthene I. Modified extraction technique. Chemosphere 46(1):39–47

    CAS  Article  Google Scholar 

  • Rababah A, Matsuzawa S (2002b) Treatment system for solid matrix contaminated with fluoranthene. II—Recirculating photodegradation technique. Chemosphere 46:49–57

    CAS  Article  Google Scholar 

  • Ratola N, Lacorte S, Alves A, Barceló D (2006) Analysis of polycyclic aromatic hydrocarbons in pine needles by gas chromatography-mass spectrometry: comparison of different extraction and clean-up procedures. J Chromatogr A 1114(2):198–204

    CAS  Article  Google Scholar 

  • Reddy KR, Adams JA (2015) Sustainable remediation of contaminated sites. Momentum Press, New York

    Google Scholar 

  • Ren G, Ren W, Teng Y, Li Z (2015) Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil. Front Microbiol 6:22–33

    Google Scholar 

  • Renoldi F, Lietti L, Saponaro S, Bonomo L, Forzatti P (2003) Thermal desorption of a PAH-contaminated soil: a case study. In: Brebbia CA (ed) Ecosystems and sustainable development, vol 2. WIT Press, Ashurst, pp 1123–1132

    Google Scholar 

  • Reynolds CM, Wolf DC (1999) Microbial based strategies for assessing rhizosphere enhanced phytoremediation. In: Proceedings of the phytoremediation technical seminar, Calgary, AB, Environment Canada, Ottawa, pp 125–135

  • Rezek J, Wiesche C, Mackova M, Zadrazil F, Macek T (2008) The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere 70:1603–1608

    CAS  Article  Google Scholar 

  • Riser-Roberts E (1998) Bioremediation of petroleum contaminated soils. Lewis Publishers, Boca Raton

    Book  Google Scholar 

  • Rivas FJ (2006) Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. J Hazard Mater 138:234–251

    CAS  Article  Google Scholar 

  • Rushton D, Ghaly AE, Martinell K (2007) Assessment of Canadian regulations and remediation methods for diesel oil contaminated soils. Am J Appl Sci 4:465

    CAS  Article  Google Scholar 

  • Saba B, Rafique U, Hashmi I (2010) Adsorption kinetics of anthracene and phenanthrene in different soils of Attock Refinery Limited (ARL) Rawalpindi, Pakistan. Desalin Water Treat 30(1–3):333–338

    Google Scholar 

  • Sasek V, Bhatt M, Cajthaml T, Malachová K, Lednická D (2003) Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Arch Environ Contam Toxicol 44:336–342

    CAS  Article  Google Scholar 

  • Sharma D, Jain S (2019) Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India. Environ Int 123:240–255

    CAS  Article  Google Scholar 

  • Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley, Hoboken

    Google Scholar 

  • Sharma A, Verma M, Haritash AK (2016) Degradation of toxic azo dye (AO7) using Fenton's process. Adv Environ Res 5(3):189–200

  • Shearer TL (1991) A comparison of In situ vitrification and rotary kiln incineration for soils treatment. J Air Waste Manag Assoc 41(9):1259–1264

    CAS  Article  Google Scholar 

  • Shin KH, Jung H, Chang P, Choi H, Kim KW (2005) Earthworm toxicity during chemical oxidation of diesel-contaminated sand. Environ Toxicol Chem 24:1924–1929

    CAS  Article  Google Scholar 

  • Silva A, Delerue-Matos C, Fiuza A (2005) Use of solvent extraction to remediate soils contaminated with hydrocarbons. J Hazard Mater B 124:224–229

    CAS  Article  Google Scholar 

  • Simpson CD, Mosi AA, Cullen WR, Reimer KJ (1996) Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada. Sci Total Environ 181(3):265–278

    CAS  Article  Google Scholar 

  • Smith MJ, Flowers TH, Duncan HJ, Alder J (2006) Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141:519–525

    CAS  Article  Google Scholar 

  • Soriano JA, Viñas L, Franco MA, González JJ, Ortiz L, Bayona JM, Albaigés J (2006) Spatial and temporal trends of petroleum hydrocarbons in wild mussels from the Galician coast (NW Spain) affected by the Prestige oil spill. Sci Total Environ 370:80–90

    CAS  Article  Google Scholar 

  • Sosa D, Hilber I, Faure R, Bartolomé N, Fonseca O, Keller A, Schwab P, Escobar A, Bucheli TD (2017) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in soils of Mayabeque, Cuba. Environ Sci Pollut Res Int 24(14):12860–12870

    CAS  Article  Google Scholar 

  • Sreelal G, Jayanthi R (2017) Review on phytoremediation technology for removal of soil contaminant. Indian J Sci Res 14(1):127–130

    CAS  Google Scholar 

  • Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AA, Grotenhuis T, Rijnaarts H, Smidt H (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79(2):619–630

    CAS  Article  Google Scholar 

  • Syed JH, Iqbal M, Zhong G, Katsoyiannis A, Yadav IC, Li J, Zhang G (2017) Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils: profile composition, spatial variations and source apportionment. Sci Rep 7:2692

    Article  CAS  Google Scholar 

  • Tam NFY, Ke L, Wang XH, Wong YS (2001) Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environ Pollut 114(2):255–263

    CAS  Article  Google Scholar 

  • Tatàno F, Felici F, Mangani F (2013) Lab-scale treatability tests for the thermal desorption of hydrocarbon-contaminated soils. Soil Sediment Contam Int J 22:433–456

    Article  CAS  Google Scholar 

  • Thomé A, Reginatto C, Cecchin I, Colla LM (2014) Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. J Environ Eng 140(11):06014005

    Article  CAS  Google Scholar 

  • Tsai T, Kao C (2009) Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag. J Hazard Mater 170:466–472

    CAS  Article  Google Scholar 

  • Ugwu KE, Ukoha PO (2016) Analysis and sources of polycyclic aromatic hydrocarbons in soil and plant samples of a coal mining area in Nigeria. Bull Environ Contam Toxicol 96(3):383–387

    CAS  Article  Google Scholar 

  • Varjani SJ, Joshi RR, Kumar PS, Srivastava VK, Kumar V, Banerjee C, Kumar RP (2017) Polycyclic aromatic hydrocarbons from petroleum oil industry activities: effect on human health and their biodegradation. In: Waste bioremediation, energy, environment, and sustainability. Springer, Singapore, pp 185–199

  • Verma M, Haritash AK (2019) Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes. J Environ Chem Eng 7(1):102886. https://doi.org/10.1016/j.jece.2019.102886

  • Verrhiest GJ, Clement B, Volat B, Montuelle B, Perrodin Y (2002) Interactions between a polycyclic aromatic hydrocarbon mixture and the microbial communities in a natural freshwater sediment. Chemosphere 46(2):187–196

    CAS  Article  Google Scholar 

  • Viglianti C, Hanna K, Brauer C, Germain P (2006) Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study. Environ Pollut 140:427–435

    CAS  Article  Google Scholar 

  • Wang JY, Huang XJ, Kao JCM, Stabnikova O (2007) Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process. J Hazard Mater 144:292–299

    CAS  Article  Google Scholar 

  • Wilcke W, Zech W (1997) Polycyclic aromatic hydrocarbons (PAHs) in forest floors of the northern Czech mountains. Z Pflanzenernähr Bodenkd 160:369–378

    Article  Google Scholar 

  • Wilcke W, Zech W, Kobza J (1996) PAH pools in soils along a PAH deposition gradient. Environ Pollut 92:307–313

    CAS  Article  Google Scholar 

  • Wilcke W, Amelung W, Zech W (1997) Heavy metals and polycyclic aromatic hydrocarbons (PAHs) in a rural community leewards of a waste incineration plant. Z Pflanzenernähr Bodenkd 160:369–378

    Article  Google Scholar 

  • Wilcke W, Lilienfein J, Lima SDC, Zech W (1999a) Contamination of highly weathered urban soils in Uberlândia, Brazil. J Plant Nutr Soil Sci 162:539–548

    CAS  Article  Google Scholar 

  • Wilcke W, Müller S, Kanchanakool N, Niamskul C, Zech W (1999b) Polycyclic aromatic hydrocarbons (PAHs) in hydromorphic soils of the tropical metropolis Bangkok. Geoderma 91:297–309

    CAS  Article  Google Scholar 

  • Wilcke W, Krauss M, Safronov G, Fokin AD, Kaupenjohann M (2005) Polycyclic aromatic hydrocarbons in soils of the Moscow region: concentrations, temporal trends, and small-scale distribution. Environ Pollut 141:327–335

    Article  CAS  Google Scholar 

  • Wilcke W, Bandowe BAM, Lueso MG, Ruppenthal M, H-d Valle, Oelmann Y (2014) Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs, azaarenes) in soils along a climosequence in Argentina. Sci Total Environ 473–474:317–325

    Article  CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249

    CAS  Article  Google Scholar 

  • Working Group on Polycyclic Aromatic Hydrocarbons (WGPAH) (2001) Ambient air pollution by polycyclic aromatic hydrocarbons: position paper, 2001 Annexes. https://ec.europa.eu/environment/air/pdf/pp_pah.pdf. Accessed 18 Oct 2016

  • Wu G, Kechavarzi C, Li X, Sui H, Pollard SJ, Coulon F (2013) Influence of mature compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in contaminated soils. Chemosphere 90:2240–2246

    CAS  Article  Google Scholar 

  • Xiaojun L, Peijun L, Xin L, Chungui Z, Qi L, Zongqiang G (2007) Biodegradation of aged polycyclic aromatic hydrocarbons by microbial consortia in soil and slurry phases. J Hazard Mater 1016:6–12

    Google Scholar 

  • Xing B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ Sci Technol 31(3):792–799

    CAS  Article  Google Scholar 

  • Yao JJ, Huang ZH, Masten SJ (1998) The ozonation of pyrene: pathway and product identification. Water Res 32:3001–3012

    CAS  Article  Google Scholar 

  • Yen CH, Chen KF, Kao CM, Liang SH, Chen TY (2011) Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: feasibility and comparison with common oxidants. J Hazard Mater 186:2097–2102

    CAS  Article  Google Scholar 

  • Yu DY, Kang N, Bae W, Banks MK (2007) Characteristics in oxidative degradation by ozone for saturated hydrocarbons in soil contaminated with diesel fuel. Chemosphere 66:799–807

    CAS  Article  Google Scholar 

  • Zaghden H, Kallel M, Elleuch B, Oudot J, Saliot A (2007) Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Mar Chem 105:70–89

    CAS  Article  Google Scholar 

  • Zhang HB, Luo YM, Wong MH, Zhao QG, Zhang GL (2006) Distribution and concentrations of PAHs in Hong Kong soils. Environ Pollut 141:107–114

    CAS  Article  Google Scholar 

  • Zhang L, Li P, Gong Z, Li X (2008) Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. J Hazard Mater 158:478–484

    CAS  Article  Google Scholar 

  • Zheng ZM, Obbard JP (2003) Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from oil contaminated refinery soil. Environ Sci Pollut Res 10:173–176

    CAS  Article  Google Scholar 

  • Zucchi M, Angiolini L, Borin S, Brusetti L, Dietrich N, Gigliotti C, Barbieri P, Sorlini C, Daffonchio D (2003) Response of bacterial community during bioremediation of an oil-polluted soil. J Appl Microbiol 94:248–257

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Mohnish Sapra, undergraduate student of Department of Environmental Engineering, Delhi Technological University, for his help in various ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Haritash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Ta Yeong Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakshi, Singh, S.K. & Haritash, A.K. Polycyclic aromatic hydrocarbons: soil pollution and remediation. Int. J. Environ. Sci. Technol. 16, 6489–6512 (2019). https://doi.org/10.1007/s13762-019-02414-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02414-3

Keywords

  • Advanced oxidation process
  • Bioremediation
  • Geotechnical properties
  • Toxicity
  • Treatment