Skip to main content
Log in

Photocatalysis in an external four-lamp reactor: modelling and validation—dichloroacetic acid photo-oxidation in the presence of TiO2

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Monte Carlo (MC) approach has been used to simulate the photocatalysis process in a photoreactor surrounded by four UV-A lamps attached to a cylindrical aluminum-covered surface. The asymmetrical configuration of the experimental setup suggests the use of MC as a suitable mathematical tool to solve the radiation transfer equation (RTE). Reflectance of frontiers in the photocatalytic reactor has been optimized to minimize the differences between the experimental and the theoretical overall volumetric rate of photon absorption (OVRPA). OVRPA increases as the TiO2 concentration is raised up to values in the proximity of 0.1 g L−1; thereafter, this parameter remains constant. The theoretical results have been validated by means of the photocatalysis of dichloroacetic acid (DCA). Validation has been carried out by completing experiments at different initial DCA concentrations and TiO2 doses. MC algorithm facilitates the solution of the RTE in complex photocatalytic systems. The use of imaginary frontiers reduces computational efforts with no loss in model validation. DCA photocatalysis sustains the theoretical results obtained under different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almquist CB, Biswas P (2001) A mechanistic approach to modelling the effect of dissolved oxygen in photo-oxidation reactions on titanium dioxide in aqueous systems. Chem Eng Sci 6:3421–3430

    Article  Google Scholar 

  • Bahnemann DW, Hilgendorff M, Memming R (1997) Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J Phys Chem B 101:4265–4275

    Article  CAS  Google Scholar 

  • Brandi RJ, Alfano OM, Cassano AE (2000) Evaluation of radiation absorption in slurry photocatalytic reactors.1. Assessment of methods in use and new proposal. Environ Sci Technol 34:2623–2630

    Article  CAS  Google Scholar 

  • Cabrera A, Santos-Juanes L, García JL, Casas JL, Maldonado MI, Li Puma G, Sánchez JA (2015) Modelling the photo-Fenton oxidation of the pharmaceutical paracetamol in water including the effect of photon absorption (VRPA). Appl Catal B Environ 166–167:295–301

    Article  Google Scholar 

  • Camera-Roda G, Augugliaro V, Cardillo AG, Loddo V, Palmisano L, Parrino F, Santarelli F (2016) A reaction engineering approach to kinetic analysis of photocatalytic reactions in slurry systems. Catal Today 259(1):87–96

    Article  CAS  Google Scholar 

  • Casado C, Marugán J, Timmers R, Muñoz M, van Grieken R (2017) Comprehensive multiphysics modeling of photocatalytic processes by computational fluid dynamics based on intrinsic kinetic parameters determined in a differential photoreactor. Chem Eng J 310:368–380

    Article  CAS  Google Scholar 

  • Cassano AE, Martin CA, Brandi RJ, Alfano OM (1995) Photoreactor analysis and design: fundamentals and applications. Ind Eng Chem Res 34:2155–2201

    Article  CAS  Google Scholar 

  • Changrani R, Raupp GB (1999) Monte Carlo simulation of the radiation field in a reticulated foam photocatalytic reactor. AIChE J 45:1085–1094

    Article  CAS  Google Scholar 

  • Feitz AJ, Waite TD (2003) Kinetic modelling of TiO2 catalyzed photodegradation of trace levels of microcystin-LR. Environ Sci Technol 37:561–568

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  • Grčić I, Li Puma G (2017) Six-flux absorption-scattering models for photocatalysis under wide-spectrum irradiation sources in annular and flat reactors using catalysts with different optical properties. Appl Catal B 211:222–234

    Article  Google Scholar 

  • Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  CAS  Google Scholar 

  • Imoberdorf GE, Taghipour F, Keshmiri M, Mohseni M (2008) Predictive radiation field modelling for fluidized bed photocatalytic reactors. Chem Eng Sci 63:4228–4238

    Article  CAS  Google Scholar 

  • Li Puma G (2005) Dimensionless analysis of photocatalytic reactors using suspended solid photocatalysts. Chem Eng Res Des 83:820–826

    Article  Google Scholar 

  • Li Puma G, Khor JN, Brucato A (2004) Modelling of an annular photocatalytic reactor for water purification: oxidation of pesticides. Environ Sci Technol 38:3737–3745

    Article  CAS  Google Scholar 

  • Mena E, Rey A, Beltrán FJ (2018) TiO2 photocatalytic oxidation of a mixture of emerging contaminants. A kinetic study independent of radiation absorption based on the direct–indirect model. Chem Eng J 339:369–380

    Article  CAS  Google Scholar 

  • Monllor-Satoca D, Gomez R, Gonzalez-Hidalgo M, Salvador P (2007) The ″Direct–Indirect″ model: an alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catal Today 129:247–255

    Article  CAS  Google Scholar 

  • Moreira J (2011) Photocatalytic degradation of phenolic compounds in water: irradiation and kinetic modelling. University of Western Ontario, London

    Google Scholar 

  • Moreira J, Serrano B, Ortiz A, de Lasa H (2010) Evaluation of photon absorption in an aqueous TiO2 slurry reactor using Monte Carlo simulations and macroscopic balance. Ind Eng Chem Res 49:10524–10534

    Article  CAS  Google Scholar 

  • Moreira J, Serrano B, Ortiz A, de Lasa H (2011) TiO2 absorption and scattering coefficients using Monte Carlo method and macroscopic balances in a photo-CREC unit. Chem Eng Sci 66:5813–5821

    Article  CAS  Google Scholar 

  • Orozco SL, Villafán-Vidales HI, Arancibia-Bulnes CA (2012) Photon absorption in a hybrid slurry reactor: assessment of differential approximations. AIChE J 58:3256–3265

    Article  CAS  Google Scholar 

  • Pareek VK, Adesina AA (2004) Light intensity distribution in a photocatalytic reactor using finite volume. AIChE J 50:1273–1288

    Article  CAS  Google Scholar 

  • Pareek VK, Ching S, Tadé M, Adesina AA (2008) Light intensity distribution in heterogeneous photocatalytic reactors. Asia Pac J Chem Eng 3:171–201

    Article  CAS  Google Scholar 

  • Rivas J, Solis RR, Gimeno O, Sagasti J (2015) Photocatalytic elimination of aqueous 2-methyl-4-chlorophenoxyacetic acid in the presence of commercial and nitrogen-doped TiO2. Int J Environ Sci Technol 12:513–526

    Article  CAS  Google Scholar 

  • Romero RL, Alfano OM, Cassano AE (2003) Radiation field in an annular, slurry photocatalytic reactor. 2. Model and experiments. Ind Eng Chem Res 42:2479–2488

    Article  CAS  Google Scholar 

  • Romero RL, Alfano OM, Cassano AE (2009) Photocatalytic reactor employing titanium dioxide: from a theoretical model to realistic experimental results. Ind Eng Chem Res 48:10456–10466

    Article  CAS  Google Scholar 

  • Salaices M, Serrano B, de Lasa H (2002) Experimental evaluation of photon absorption in an aqueous TiO2 slurry reactor. Chem Eng J 90:219–229

    Article  CAS  Google Scholar 

  • Sánchez-Pérez JA, Soriano-Molina P, Rivas G, García Sánchez JL, Casas López JL, Fernández Sevilla JM (2017) Effect of temperature and photon absorption on the kinetics of micropollutants removal by solar photo-Fenton in raceway pond reactors. Chem Eng J 310(2):464–472

    Article  Google Scholar 

  • Satuf ML, Brandi RJ, Cassano AE, Alfano OM (2005) Experimental method to evaluate the optical properties of aqueous titanium dioxide suspensions. Ind Eng Chem Res 44:6643–6649

    Article  CAS  Google Scholar 

  • Toepfer B, Gora A, Li Puma G (2006) Photocatalytic oxidation of multicomponent solutions of herbicides: reaction kinetics analysis with explicit photon absorption effects. Appl Catal B Environ 68:171–180

    Article  CAS  Google Scholar 

  • Valadés-Pelayo PJ, Moreira J, Serrano B, de Lasa H (2014) Boundary conditions and phase functions in a Photo-CREC Water-II reactor radiation field. Chem Eng Sci 107:123–136

    Article  Google Scholar 

  • Valadés-Pelayo PJ, Guayaquil Sosa F, Serrano B, de Lasa H (2015) Photocatalytic reactor under different external irradiance conditions: validation of a fully predictive radiation absorption model. Chem Eng Sci 126:42–54

    Article  Google Scholar 

  • Zazueta AL, Destaillats H, Li Puma G (2013) Radiation field modelling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method. Chem Eng J 217:475–485

    Article  CAS  Google Scholar 

  • Zhai X, Chen Z, Zhao S, Wang H, Yang L (2010) Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders. J Environ Sci 22:1527–1533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the economic support received from Gobierno de Extremadura (projects GRU10012 and GRU15033) and MINECO of Spain (CTQ2015/64944-R and red FOTOCAT CTM2015-71054-REDT). Mr. Rafael Rodríguez Solís also acknowledges Gobierno de Extremadura (Consejería de Empleo Empresa e Innovación) and European Social Funds for his Ph.D. Grant (PD12058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Solís.

Additional information

Editorial responsibility: J Aravind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas, F.J., Hidalgo, A., Solís, R.R. et al. Photocatalysis in an external four-lamp reactor: modelling and validation—dichloroacetic acid photo-oxidation in the presence of TiO2. Int. J. Environ. Sci. Technol. 16, 6705–6716 (2019). https://doi.org/10.1007/s13762-019-02282-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02282-x

Keywords

Navigation