Spectrophotometric and conductometric study of the interaction of saponin with chromium(VI) and lead(II)

Abstract

The removal of heavy metals from contaminated soil/water by biosurfactants depends on the ability of biosurfactant to form complexes with metals. The interaction of quillaja saponin, a nonionic natural biosurfactant, with heavy metal ions, viz. chromium(VI) and lead(II), has been studied spectrophotometrically and conductometrically in order to obtain detailed information for the saponin–metal complexes. Both the methods indicate complex formation between saponin and metal ions. Critical micelle concentration of saponin in the absence and presence of metal ions obtained by both the methods was in good agreement. The thermodynamic parameters, viz. free energy, enthalpy and entropy change, for micellization have been determined.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abyanesh S, Fazaelipoor MH (2016) Evaluation of Rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by the precipitation flotation. J Environ Manage 165:184–187

    Article  Google Scholar 

  2. Ashwini S, Shantaram M (2016) Preliminary phytochemical and biochemical composition of different solvent extracts of red seaweed gracilaria corticata from surathkal beach, Karnataka in India. Int J Life Sci Technol 13:106–110

    Google Scholar 

  3. Aziz MA, Ashour A, Madbouly H, Melad S, Kerikshi KE (2017) Investigations on green preparation of heavy metal saponin complexes. J Water Environ Nanotechnol 2(2):103–111

    Google Scholar 

  4. Bano N (1985) Phytochemical studieson saponins and sapogenins of guatacum officinale. HEJ Research Institute of chemistry, International Center for Chemical and Biological Sciences, University of Karachi (Karachi)

  5. Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    CAS  Article  Google Scholar 

  6. Cameotra SS, Singh P (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319(2):291–297

    Article  Google Scholar 

  7. Chen W-J, Hasiao L-C, Chen KK-Y (2008) Metal desorption from copper (II)/nickel (II)-spiked kaolin as a soil component using plant derived saponin biosurfactant. Process Biochem 43:488–498

    Article  Google Scholar 

  8. Deleu E, Paquot M (2004) Renewable vegetables resources to microorganisms: new trends in surfactants. C R Chim 7:641–646

    CAS  Article  Google Scholar 

  9. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Rev 61:47–64

    CAS  Google Scholar 

  10. Gao L, Kano N, Sato Y, Li C, Zhang S, Imaizumi H (2012) Behavior and distribution of heavy metals including rare earth elements, thorium, and uranium in sludge from industry waste treatment plant and recovery method of elements by biosurfactants application. Bioinorg Chem Appl. https://doi.org/10.1155/2012/173819

    Article  Google Scholar 

  11. Higuchi R (1987) Structure of desacylsaponins obtained from the bark of the Quillaja saponaria. Phytochemistry 26:229–235

    Article  Google Scholar 

  12. Hong KJ, Tokunaga S, Ishigami Y (2000) Extraction of Heavy metals from MSW incinerator fly ash using saponin. Chemosphere 41:345–352

    CAS  Article  Google Scholar 

  13. Hong KJ, Tokunaga S, Kajiuchi T (2002) Evaluation of remediation process with plant–derived biosurfactant for recovery of heavy metals from contaminated soil. Chemosphere 49:379–387

    CAS  Article  Google Scholar 

  14. Hostettmann K, Marston A (1995) Saponin. Cambridge University Press, Cambridge, pp 1–4

    Google Scholar 

  15. Huang W, Liu ZM (2013) Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: isotherm kinetic characteristics and mechanism studies. Colloids Surf B Biointerfaces 105:113–119

    CAS  Article  Google Scholar 

  16. Kanga SH, Bonner JS, Page CA, Mills MA, Autenrieth RL (1997) Solubilization of naphthalene from crude oil using biosurfactants. Environ Sci Tech 31:556–561

    CAS  Article  Google Scholar 

  17. Kawamura H, Manabe M, Miyamoto Y, Fuzita Y, Tokunaga S (1989) Partition coefficients of homologous. Omega-phenylalkanols between water and sodium dodecyl sulfate micelles. J Phys Chem 93:5536–5540

    CAS  Article  Google Scholar 

  18. Kiran GS, Thomas TA, Selvin J (2010) Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid state cultivation. Colloids Surf B 78:8–16

    CAS  Article  Google Scholar 

  19. Lai CC, Huang YC, Wei YH, Chang JS (2009) Bio-surfactant enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    CAS  Article  Google Scholar 

  20. Liu Z, Shao B, Zeng G, Chen M, Li Z, Liu Y, Jiang Y, Zhong H, Liu Y, Yan M (2018) Effect of rhamnolipid on the removal of 2,4,2,4-tetrabrominated biphenyl ether (BDE-47) by Phanerochaete chrysosporium analyzed with a combined approach of experiments and molecular docking. Chemosphere 210:922–930

    CAS  Article  Google Scholar 

  21. Miller RM (1995) Biosurfactant facilitated remediation of contaminated soil. Environ Health Perspect 103:59–62

    CAS  Google Scholar 

  22. Mulligan CN (2005) Environmental applications for biosurfactans. Environ Pollut 133:183–198

    CAS  Article  Google Scholar 

  23. Mulligan CN, Yong RN, Gibbs BF (1999) Heavy metal removal from sediments by Bio-surfactants. J Hazard Mater 85:111–125

    Article  Google Scholar 

  24. Noor S, Younas N, Rashid MA, Nazir S, Usman M, Naz T (2018) Spectroscopic, conductometric and biological investigation of [Ni(phen)3]F2. EtOH.MeOH.8H2O complex in anionic micellar media. Colloidal Interface Sci Commun 27:26–34

    CAS  Article  Google Scholar 

  25. Rodrigues L, Banat IM, Teixeira J, Oliveria R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    CAS  Article  Google Scholar 

  26. Shah A, Khan AM, Usman M, Qureshi RUMANA, Siddiq M, Shah SS (2009) Thermodynamic characterization of dexamethanose sodium phosphate and its complex with DNA as studied by conductometric and spectroscopic techniques. J Chil Chem Soc 54:134–137

    CAS  Article  Google Scholar 

  27. Tang J, He J, Liu T, Xin X (2017a) Removal of heavy metals with sequential sludge washing techniques using saponin: optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism. RSC Adv. 7:33385–33401

    CAS  Article  Google Scholar 

  28. Tang J, He J, Liu T, Xin X, Hu H (2017b) Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment. Chemosphere 189:599–608

    CAS  Article  Google Scholar 

  29. Usman M, Siddiq M (2013) Surface and micellar properties of chloroquine diphosphate and its interactions with surfactants and human serum albumin. J Chem Therodyn 58:182–190

    Google Scholar 

  30. Usman M, Khan A, Siddiq M (2010) Thermodynamic properties of amphiphilic antidepressant drug citalopram HBr. J Chem Soc Pak 32:1–6

    CAS  Google Scholar 

  31. Usman M, Cheema MA, Khan A, Farooki ZH, Mosquera V, Siddiq M (2013) A comparative study of thermodynamic properties of structurally related phenothiazine drugs in aqueous solution. J Chil Chem Soc 58:1842–1845

    CAS  Article  Google Scholar 

  32. Younas N, Rashid MA, Nazir S, Usman M, Sarfraz RA, Jamil A, Whitwood AC (2017a) Spectroscopic and conductometric study of interaction of anionic surfactants with [Co(phen)3]F2·2H2O complex. J Mol Liq 240:351–360

    CAS  Article  Google Scholar 

  33. Younas N, Rashid MA, Nazir S, Usman M, Nazir S, Noor S, Basit A, Jamil M (2017b) solubilization of Ni Imidazole complex in micellar media of anionic surfactants, sodium dodecyl sulfate and sodium stearate. J Surfactants Deterg 20:1311–1320

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Prof. Rachna Asthana, Director, AITH, Kanpur, for her keen interest and providing necessary facilities for the work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. K. Upadhyay.

Additional information

Editorial responsibility: Agnieszka Galuszka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, S.K., Hari, O. Spectrophotometric and conductometric study of the interaction of saponin with chromium(VI) and lead(II). Int. J. Environ. Sci. Technol. 16, 7997–8004 (2019). https://doi.org/10.1007/s13762-019-02210-z

Download citation

Keywords

  • Saponin
  • Chromium(VI)
  • Lead(II)
  • Biosurfactant complexes