Skip to main content

Adsorptive removal of arsenic from real sample of polluted water using magnetic GO/ZnFe2O4 nanocomposite and ZnFe2O4 nanospinel

Abstract

Developing affordable and efficient materials for the removal of arsenic from drinking water is crucial for human and environmental safety. In the present study, the adsorptive performance of magnetic GO/ZnFe2O4 nanocomposite and ZnFe2O4 nanospinel for arsenic removal from aqueous water was analyzed. The adsorbents were characterized using Fourier-transform infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy, selected area electron diffraction and vibrating sample magnetometer. The conditions were optimized by response surface methodology (RSM) by considering the main factors as adsorption time, arsenic concentration, dose of adsorbent and pH. The optimum condition for the removal of arsenic was observed at pH 9.76, 30 min of contact time, 13.4 mg L−1 of initial arsenic concentration and 0.048 g of adsorbent dosage. The predicted arsenic removal percent under optimized conditions was noted as 98%; on the other hand, the experimental values at optimized conditions were observed as 96%. The Pareto analysis predicted that pH of the polluted water is the major factor in adsorptive arsenic removal and the relative importance of the process factors was found in the following order: pH > arsenic concentration > contact time > adsorbent dosage. Thus, introduced compositions form a promising material for the decontamination of polluted water or using in environmental remediation programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbasian AR, Rahimipour MR, Hamnabard Z (2015) Hydrothermal synthesis of lithium meta titanate nanocrystallites. Proc Mater Sci 11:336–341. https://doi.org/10.1016/j.mspro.2015.11.110

    CAS  Article  Google Scholar 

  2. Arabnezhad M, Shafieeafarani M, Jafari A (2017) Co-precipitation synthesis of ZnO–TiO2 nanostructure composites for arsenic photodegradation from industrial wastewater. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-017-1585-7

    Article  Google Scholar 

  3. Burton ED, Bush RT, Johnston SG, Watling KM, Hocking RK, Sullivan LA, Parker GK (2009) Sorption of arsenic(V) and arsenic(III) to schwertmannite. Environ Sci Technol 43:9202–9207. https://doi.org/10.1021/es902461x

    CAS  Article  Google Scholar 

  4. Chammui Y, Sooksamiti P, Naksata W, Thiansem S, Arqueropanyo O-A (2014) Removal of arsenic from aqueous solution by adsorption on Leonardite. Chem Eng J 240:202–210. https://doi.org/10.1016/j.cej.2013.11.083

    CAS  Article  Google Scholar 

  5. Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T (2016) Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ 569–570:476–488. https://doi.org/10.1016/j.scitotenv.2016.06.166

    CAS  Article  Google Scholar 

  6. Çiftçi TD, Henden E (2015) Nickel/nickel boride nanoparticles coated resin: a novel adsorbent for arsenic(III) and arsenic(V) removal. Powder Technol 269:470–480. https://doi.org/10.1016/j.powtec.2014.09.041

    CAS  Article  Google Scholar 

  7. Dhifaf AJ, Neus L, Kostas K (2016) Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology. 2D Mater 3:014006

    Article  Google Scholar 

  8. Dutta PK, Ray AK, Sharma VK, Millero FJ (2004) Adsorption of arsenate and arsenite on titanium dioxide suspensions. J Colloid Interface Sci 278:270–275. https://doi.org/10.1016/j.jcis.2004.06.015

    CAS  Article  Google Scholar 

  9. Flyunt R et al (2014) Mechanistic aspects of the radiation-chemical reduction of graphene oxide to graphene-like materials. Int J Radiat Biol 90:486–494. https://doi.org/10.3109/09553002.2014.907934

    CAS  Article  Google Scholar 

  10. Hosseini SA, Babaei S (2017) Graphene oxide/zinc oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of methylene blue (MB)-process modeling by response surface methodology (RSM). J Braz Chem Soc 28:299–307

    CAS  Google Scholar 

  11. Hosseini SA, Davodian M, Abbasian AR (2017) Remediation of phenol and phenolic derivatives by catalytic wet peroxide oxidation over Co–Ni layered double nano hydroxides. J Taiwan Inst Chem Eng 75:97–104. https://doi.org/10.1016/j.jtice.2017.03.001

    CAS  Article  Google Scholar 

  12. Hosseini SA, Majidi V, Abbasian AR (2018) Photocatalytic desulfurization of dibenzothiophene by NiCo2O4 nanospinel obtained by an oxidative precipitation process modeling and optimization. J Sulfur Chem 39:119–129. https://doi.org/10.1080/17415993.2017.1369981

    CAS  Article  Google Scholar 

  13. Hussein FB, Abu-Zahra NH (2016) Synthesis, characterization and performance of polyurethane foam nanocomposite for arsenic removal from drinking water. J Water Process Eng 13:1–5. https://doi.org/10.1016/j.jwpe.2016.07.005

    Article  Google Scholar 

  14. Kapitanova OO, Panin GN, Baranov AN, Kang TW (2012) Synthesis and properties of graphene oxide/graphene nanostructures. J Korean Phys Soc 60:1789–1793. https://doi.org/10.3938/jkps.60.1789

    CAS  Article  Google Scholar 

  15. Lata S, Samadder SR (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manag 166:387–406. https://doi.org/10.1016/j.jenvman.2015.10.039

    CAS  Article  Google Scholar 

  16. Mandal P (2017) An insight of environmental contamination of arsenic on animal health. Emerg Contam 3:17–22. https://doi.org/10.1016/j.emcon.2017.01.004

    Article  Google Scholar 

  17. Mandal S, Sahu MK, Patel RK (2013) Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43). Water Resour Ind 4:51–67. https://doi.org/10.1016/j.wri.2013.09.003

    Article  Google Scholar 

  18. Mostaan H, Mehrizi MZ, Rafiei M, Beygi R, Abbasian AR (2017) Contribution of mechanical activation and annealing in the formation of nanopowders of Al(Cu)/TiC–Al2O3 hybrid nanocomposite. Ceram Int 43:2680–2685. https://doi.org/10.1016/j.ceramint.2016.11.082

    CAS  Article  Google Scholar 

  19. Pan B, Li Z, Zhang Y, Xu J, Chen L, Dong H, Zhang W (2014) Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chem Eng J 248:290–296. https://doi.org/10.1016/j.cej.2014.02.093

    CAS  Article  Google Scholar 

  20. Pillai A, Sunita G, Gupta VK (2000) A new system for the spectrophotometric determination of arsenic in environmental and biological samples. Anal Chim Acta 408:111–115. https://doi.org/10.1016/S0003-2670(99)00832-6

    CAS  Article  Google Scholar 

  21. Qiao J, Jiang Z, Sun B, Sun Y, Wang Q, Guan X (2012) Arsenate and arsenite removal by FeCl3: effects of pH, As/Fe ratio, initial As concentration and co-existing solutes. Sep Purif Technol 92:106–114. https://doi.org/10.1016/j.seppur.2012.03.023

    CAS  Article  Google Scholar 

  22. Rahman MM, Adil M, Yusof AM, Kamaruzzaman YB, Ansary RH (2014) Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells. Materials 7:3634–3650

    CAS  Article  Google Scholar 

  23. Shokri E, Yegani R, Pourabbas B, Kazemian N (2016) Preparation and characterization of polysulfone/organoclay adsorptive nanocomposite membrane for arsenic removal from contaminated water. Appl Clay Sci 132–133:611–620. https://doi.org/10.1016/j.clay.2016.08.011

    CAS  Article  Google Scholar 

  24. Tang X et al (2016) Chemical coagulation process for the removal of heavy metals from water: a review. Desalin Water Treat 57:1733–1748. https://doi.org/10.1080/19443994.2014.977959

    CAS  Article  Google Scholar 

  25. Wei J, Zhang X, Liu Q, Li Z, Liu L, Wang J (2014) Magnetic separation of uranium by CoFe2O4 hollow spheres. Chem Eng J 241:228–234. https://doi.org/10.1016/j.cej.2013.12.035

    CAS  Article  Google Scholar 

  26. Wei Z et al (2016) The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO2 anatase [101] surface. J Colloid Interface Sci 462:252–259. https://doi.org/10.1016/j.jcis.2015.10.018

    CAS  Article  Google Scholar 

  27. Yazdani M, Tuutijärvi T, Bhatnagar A, Vahala R (2016) Adsorptive removal of arsenic(V) from aqueous phase by feldspars: kinetics, mechanism, and thermodynamic aspects of adsorption. J Mol Liq 214:149–156. https://doi.org/10.1016/j.molliq.2015.12.002

    CAS  Article  Google Scholar 

  28. Zamiri R et al (2017) Optical and magnetic properties of ZnO/ZnFe2O4 nanocomposite. Mater Chem Phys 192:330–338. https://doi.org/10.1016/j.matchemphys.2017.01.066

    CAS  Article  Google Scholar 

  29. Zhou Y et al (2017) Fabrication of novel ZnFe2O4/BiOI nanocomposites and its efficient photocatalytic activity under visible-light irradiation. J Alloys Compd 696:353–361. https://doi.org/10.1016/j.jallcom.2016.11.323

    CAS  Article  Google Scholar 

  30. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Iranian Nanotechnology Initiative Council and Urmia University for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. R. Abbasian.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.A., Abbasian, A.R., Gholipoor, O. et al. Adsorptive removal of arsenic from real sample of polluted water using magnetic GO/ZnFe2O4 nanocomposite and ZnFe2O4 nanospinel. Int. J. Environ. Sci. Technol. 16, 7455–7466 (2019). https://doi.org/10.1007/s13762-018-2140-x

Download citation

Keywords

  • Arsenic removal
  • Magnetic nanocomposite
  • Graphene oxide
  • RSM
  • Adsorption