Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073
Article
Google Scholar
Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117
CAS
Article
Google Scholar
Atar N, Yola ML (2018) Core–shell nanoparticles/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer for electrochemical sensing of cypermethrin. J Electrochem Soc 165(5):H255–H262
CAS
Article
Google Scholar
Awasthi G, Kumar A, Awasthi KK, Singh AP, Srivastva S, Vajpayee P, Mishra K, Tripathi RD (2016) Green synthesis of nanoparticles: an emerging phyotechnology. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, Berlin, pp 339–363
Google Scholar
Bakshi M, Singh HB, Abhilash PC (2014) The unseen impact of nanoparticles: more or less? Curr Sci 106:350–352
Google Scholar
Bhushan B (2007) Nanotechnology: a boon or bane? AIP Conf Proc 929:250–253
Article
Google Scholar
Chen G, Ma C, Mukherjee A, Musante C, Zhang J, White JC, Dhankher OP, Xing B (2016) Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response. Nanotoxicology 10(9):1243–1253
CAS
Article
Google Scholar
Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina CI et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45–55
Article
CAS
Google Scholar
Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23
Article
Google Scholar
Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160
CAS
Article
Google Scholar
Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200
Article
Google Scholar
Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262
CAS
Article
Google Scholar
Gladkovaa MM, Terekhovaa VA (2013) Engineered nanomaterials in soil: sources of entry and migration pathways. Mosc Univ Soil Sci Bull 68(3):129–134
Article
Google Scholar
Göde C, Yola ML, Yılmaz A, Atar N, Wang S (2017) A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: application to simultaneous determination of Fe(III), Cd (II) and Pb(II) ions. J Colloid Interface Sci 508:525–531
Article
CAS
Google Scholar
Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. Environ Monit Assess 13(5):1145–1155
CAS
Article
Google Scholar
Gupta VK, Yola ML, Atar N, Ustundağ Z, Solak AO (2013a) A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim Acta 112:541–548
CAS
Article
Google Scholar
Gupta VK, Yola ML, Qureshi MS, Solak AO, Atar N, Üstündağ Z (2013b) A novel impedimetric biosensor based on graphene oxide/gold nanoplatform for detection of DNA arrays. Sens Actuators B Chem 188:1201–1211
CAS
Article
Google Scholar
Hema S, Thambiraj S, Shankaran DR (2018) Nanoformulations for targeted drug delivery to prostate cancer: an overview. J Nanosci Nanotechnol 18(8):5171–5191
CAS
Article
Google Scholar
Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nature Nanotechnol 2:663–664
CAS
Article
Google Scholar
Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385
CAS
Article
Google Scholar
Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563–564:904–911
Article
CAS
Google Scholar
Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in fenugreek (Trigonellafoenum graecum L.). Saudi Pharm J 25(3):443–447
CAS
Article
Google Scholar
Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 157(5):1619–1625
CAS
Article
Google Scholar
Johnson AC, Park B (2012) Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks. Environ Toxicol Chem 31(11):2582–2587
CAS
Article
Google Scholar
Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011
Article
Google Scholar
Khandelwal A, Joshi R (2018) Synthesis of nanoparticles and their application in agriculture. Acta Sci Agric 2(3):10–13
Google Scholar
Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, Rui Y (2017) Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 9(5):790
Article
CAS
Google Scholar
Koo Y, Wang J, Zhang Q, Zhu H, Chehab EW, Colvin VL et al (2015) Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol 49:626–632
CAS
Article
Google Scholar
Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621
CAS
Article
Google Scholar
Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carrière M (2012) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734
CAS
Article
Google Scholar
Li Y, Niu J, Shang E, Crittenden J (2014) Photochemical transformation and photoinduced toxicity reduction of silver nanoparticles in the presence of perfluorocarboxylic acids under UV irradiation. Environ Sci Technol 48(9):4946–4953
CAS
Article
Google Scholar
Lobo AO, Marciano FR, Regiani I, Matsushima JT, Ramos SC, Corat EJ (2011) Influence of temperature and time for direct hydroxyapatite electrodeposition on superhydrophilic vertically aligned carbon nanotube films. J Nanomed Nanotechnol 6:277
Google Scholar
López-Moreno ML, Avilés LL, Pérez NG, Irizarry BÁ, Perales O, Cedeno-Mattei Y, Román F (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Tot Environ 550:45–52
Article
CAS
Google Scholar
Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778
CAS
Article
Google Scholar
Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618
Article
CAS
Google Scholar
Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, White JC, Xing B, Dhankher OP (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3(6):1369–1379
CAS
Article
Google Scholar
Maheshwari R, Singh P, Chauhan AK, Rani B (2011) Nanotechnology: a boon or bane. Int Res J Pharm 2(12):108–113
Google Scholar
Medetalibeyoğlu H, Manap S, Yokuş ÖA, Beytur M, Kardaş F, Akyıldırım O, Özkan V, Yüksek H, Yola ML, Atar N (2018) Fabrication of Pt/Pd nanoparticles/polyoxometalate/ionic liquid nanohybrid for electrocatalytic oxidation of methanol. J Electrochem Soc 165(5):F338–F341
Article
CAS
Google Scholar
Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL (2017) Assessing plant uptake and transport mechanisms of engineered nanomaterials from soil. MRS Bull 42:379–383
CAS
Article
Google Scholar
Mendonça MCP, Rizoli C, Ávila DS, Amorim MJB, de Jesus MB (2017) Nanomaterials in the environment: perspectives on in vivo terrestrial toxicity testing. Front Environ Sci 5:71
Article
Google Scholar
Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8(1):013001
Article
CAS
Google Scholar
Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano level. Science 311:622–627
CAS
Article
Google Scholar
Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557
CAS
Article
Google Scholar
Nicolodi M, Gianello C (2014) Understanding soil as an open system and fertility as an emergent property of the soil system. Sustain Agric Res 4(1):94
Article
Google Scholar
Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22
CAS
Article
Google Scholar
Onac C, Alpoguz HK, Yola ML, Kaya A (2018) Transport of melamine by a new generation of nano-material membranes containing carbon nanotubes and determination with surface plasmon resonance. Innov Food Sci Emerg Technol 45:467–470
CAS
Article
Google Scholar
Patil A, Chirmade UN, Trivedi V, Lamprou DA, Urquart A, Douroumis D (2011) Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide. J Nanomed Nanotechnol 2:111
CAS
Article
Google Scholar
Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12
Article
Google Scholar
Piccinno F, Gottschalk F, Seeger S, Nowack BJ (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109
Article
Google Scholar
Praveen A, Khan E, Perwez M, Sardar M, Gupta M (2018) Iron oxide nanoparticles as nano-adsorbents: a possible way to reduce arsenic phytotoxicity in indian mustard plant (Brassica juncea L.). J Plant Growth Reg 37(2):612–624
CAS
Article
Google Scholar
Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1–3):323–328
CAS
Article
Google Scholar
Rehna VJ, Siddique A (2018) Risk evaluation and exposure hazards of engineered nanomaterials: a survey. Am J Eng Res 7(1):235–245
Google Scholar
Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642
CAS
Article
Google Scholar
Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124
Article
Google Scholar
Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337–346
CAS
Article
Google Scholar
Salehi H, Chehregani A, Lucini L, Majd A, Gholami M (2018) Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ 616:1540–1551
Article
CAS
Google Scholar
Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192
CAS
Article
Google Scholar
Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10:257–278
Google Scholar
Servin AD, Morales MI, Castillo-Michel H, Hernandez Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598
CAS
Article
Google Scholar
Shang E, Li Y, Niu J, Zhou Y, Wang T, Crittenden JC (2017) Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles. Water Res 124:595–604
CAS
Article
Google Scholar
Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609
CAS
Article
Google Scholar
Sonal S, Prabhakar V, Aneesh T, Sabitha M (2007) Nanomedicine: promise of the future in disease management. Internet J Nanotechnol 2(2):1–6
Google Scholar
Tang Y, He R, Zhao J, Nie G, Xu L, Xing B (2016) Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut 212:605–614
CAS
Article
Google Scholar
Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-Hydroxy-2′-deoxyguanosine (8-OHDG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C 27:120–139
CAS
Article
Google Scholar
Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha NN, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127
CAS
Article
Google Scholar
Vinković T, Novák O, Strnad M, Goessler W, Jurašin DD, Parađiković N, Vrček IV (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18
Article
CAS
Google Scholar
Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC et al (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441
CAS
Article
Google Scholar
Wang P, Menzies NW, Dennis PG, Guo J, Forstner C, Sekine R, Lombi E, Kappen P, Bertsch PM, Kopittke PM (2016a) Silver nanoparticles entering soils via the wastewater–sludge–soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability. Environ Sci Technol 50(15):8274–8281
CAS
Article
Google Scholar
Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016b) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243
Google Scholar
Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP et al (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161–1172
CAS
Article
Google Scholar
Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190
CAS
Article
Google Scholar
Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20(12):8636–8648
CAS
Article
Google Scholar
Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31
CAS
Article
Google Scholar
Yola ML, Atar N (2017) A review: molecularly imprinted electrochemical sensors for determination of biomolecules/drug. Curr Anal Chem 13(1):13–17
CAS
Article
Google Scholar
Yola ML, Atar N (2018) Phenylethanolamine A (PEA) imprinted polymer on carbon nitride nanotubes/graphene quantum dots/core-shell nanoparticle composite for electrochemical PEA detection in urine sample. J Electrochem Soc 165(2):H1–H9
CAS
Article
Google Scholar
Yola ML, Atar N, Üstündağ Z, Solak AO (2013) A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J Electroanal Chem 698:9–16
CAS
Article
Google Scholar
Yola ML, Eren T, Atar N (2014) Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285
CAS
Article
Google Scholar
Yola ML, Eren T, Atar N (2016) A molecular imprinted voltammetric sensor based on carbon nitride nanotubes: application to determination of melamine. J Electrochem Soc 163(13):B588–B593
CAS
Article
Google Scholar
Yuan L, Richardson CJ, Ho M, Willis CW, Colman BP, Wiesner MR (2018) Stress responses of aquatic plants to silver nanoparticles. Environ Sci Technol 52(5):2558–2565
CAS
Article
Google Scholar
Zhang P, Ma Y, Liu S, Wang G, Zhang J, He X, Zhang J, Rui Y, Zhang Z (2017) Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut 220:1400–1408
CAS
Article
Google Scholar
Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759
CAS
Article
Google Scholar
Zhu X, Hondroulis E, Liu W, Li CZ (2013) Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small 9(9–10):1821–1830
CAS
Article
Google Scholar
Zhu B, Xia X, Xia N, Zhang S, Guo X (2014) Modification of fatty acids in membranes of bacteria: implication for an adaptive mechanism to the toxicity of carbon nanotubes. Environ Sci Technol 48(7):4086–4095
CAS
Article
Google Scholar
Zhu B, Xia X, Zhang S, Tang Y (2018) Attenuation of bacterial cytotoxicity of carbon nanotubes by riverine suspended solids in water. Environ Pollut 234:581–589
CAS
Article
Google Scholar