Skip to main content

A review on positive and negative impacts of nanotechnology in agriculture

Abstract

Nanotechnology holds huge potentials in several fields and is envisaged as a technology to lead the way toward sustainable environment-friendly development in the coming years. The basic theme of nanotechnology is to use particles having size in nanometer range for various applications in medical fields, cosmetics industry, and agriculture and food technologies. The benefits associated with nanotechnology include among others increase in yield and quality of produce in agriculture, improved cosmetic products, directed delivery of medicines and sensor applications. Advancement in the development of nanosensors has made recognition of disease causing elements, toxins and nutrients in foods, and elements in environmental samples, easier and cost effective. However, immense focus on nanotechnology in past few decades has led to its unrestricted development and consequently enormous use of nanoparticles (NPs). It is considered that NPs may pose risks to the environment and biological systems. It is also becoming evident that the size, structure and type of nanomaterials, such as graphene/graphene oxide with gold NPs, carbon and carbon nitride nanotubes, have different effects on plants and environment. Hence, long-term life cycle analyses are needed to assess impacts of NPs. This review presents a brief overview of applications of nanomaterials in agriculture and discusses its positive and negative aspects in agricultural field. The review emphasizes that future development of nanotechnology must be based on scientific evaluations of benefits and risks associated to it in long term.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073

    Article  Google Scholar 

  • Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117

    CAS  Article  Google Scholar 

  • Atar N, Yola ML (2018) Core–shell nanoparticles/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer for electrochemical sensing of cypermethrin. J Electrochem Soc 165(5):H255–H262

    CAS  Article  Google Scholar 

  • Awasthi G, Kumar A, Awasthi KK, Singh AP, Srivastva S, Vajpayee P, Mishra K, Tripathi RD (2016) Green synthesis of nanoparticles: an emerging phyotechnology. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, Berlin, pp 339–363

    Google Scholar 

  • Bakshi M, Singh HB, Abhilash PC (2014) The unseen impact of nanoparticles: more or less? Curr Sci 106:350–352

    Google Scholar 

  • Bhushan B (2007) Nanotechnology: a boon or bane? AIP Conf Proc 929:250–253

    Article  Google Scholar 

  • Chen G, Ma C, Mukherjee A, Musante C, Zhang J, White JC, Dhankher OP, Xing B (2016) Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response. Nanotoxicology 10(9):1243–1253

    CAS  Article  Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina CI et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45–55

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160

    CAS  Article  Google Scholar 

  • Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200

    Article  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262

    CAS  Article  Google Scholar 

  • Gladkovaa MM, Terekhovaa VA (2013) Engineered nanomaterials in soil: sources of entry and migration pathways. Mosc Univ Soil Sci Bull 68(3):129–134

    Article  Google Scholar 

  • Göde C, Yola ML, Yılmaz A, Atar N, Wang S (2017) A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: application to simultaneous determination of Fe(III), Cd (II) and Pb(II) ions. J Colloid Interface Sci 508:525–531

    Article  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. Environ Monit Assess 13(5):1145–1155

    CAS  Article  Google Scholar 

  • Gupta VK, Yola ML, Atar N, Ustundağ Z, Solak AO (2013a) A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim Acta 112:541–548

    CAS  Article  Google Scholar 

  • Gupta VK, Yola ML, Qureshi MS, Solak AO, Atar N, Üstündağ Z (2013b) A novel impedimetric biosensor based on graphene oxide/gold nanoplatform for detection of DNA arrays. Sens Actuators B Chem 188:1201–1211

    CAS  Article  Google Scholar 

  • Hema S, Thambiraj S, Shankaran DR (2018) Nanoformulations for targeted drug delivery to prostate cancer: an overview. J Nanosci Nanotechnol 18(8):5171–5191

    CAS  Article  Google Scholar 

  • Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nature Nanotechnol 2:663–664

    CAS  Article  Google Scholar 

  • Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385

    CAS  Article  Google Scholar 

  • Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2016) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Sci Total Environ 563–564:904–911

    Article  CAS  Google Scholar 

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in fenugreek (Trigonellafoenum graecum L.). Saudi Pharm J 25(3):443–447

    CAS  Article  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 157(5):1619–1625

    CAS  Article  Google Scholar 

  • Johnson AC, Park B (2012) Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks. Environ Toxicol Chem 31(11):2582–2587

    CAS  Article  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  • Khandelwal A, Joshi R (2018) Synthesis of nanoparticles and their application in agriculture. Acta Sci Agric 2(3):10–13

    Google Scholar 

  • Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, Rui Y (2017) Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 9(5):790

    Article  CAS  Google Scholar 

  • Koo Y, Wang J, Zhang Q, Zhu H, Chehab EW, Colvin VL et al (2015) Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol 49:626–632

    CAS  Article  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    CAS  Article  Google Scholar 

  • Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carrière M (2012) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734

    CAS  Article  Google Scholar 

  • Li Y, Niu J, Shang E, Crittenden J (2014) Photochemical transformation and photoinduced toxicity reduction of silver nanoparticles in the presence of perfluorocarboxylic acids under UV irradiation. Environ Sci Technol 48(9):4946–4953

    CAS  Article  Google Scholar 

  • Lobo AO, Marciano FR, Regiani I, Matsushima JT, Ramos SC, Corat EJ (2011) Influence of temperature and time for direct hydroxyapatite electrodeposition on superhydrophilic vertically aligned carbon nanotube films. J Nanomed Nanotechnol 6:277

    Google Scholar 

  • López-Moreno ML, Avilés LL, Pérez NG, Irizarry BÁ, Perales O, Cedeno-Mattei Y, Román F (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Tot Environ 550:45–52

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778

    CAS  Article  Google Scholar 

  • Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618

    Article  CAS  Google Scholar 

  • Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, White JC, Xing B, Dhankher OP (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3(6):1369–1379

    CAS  Article  Google Scholar 

  • Maheshwari R, Singh P, Chauhan AK, Rani B (2011) Nanotechnology: a boon or bane. Int Res J Pharm 2(12):108–113

    Google Scholar 

  • Medetalibeyoğlu H, Manap S, Yokuş ÖA, Beytur M, Kardaş F, Akyıldırım O, Özkan V, Yüksek H, Yola ML, Atar N (2018) Fabrication of Pt/Pd nanoparticles/polyoxometalate/ionic liquid nanohybrid for electrocatalytic oxidation of methanol. J Electrochem Soc 165(5):F338–F341

    Article  CAS  Google Scholar 

  • Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL (2017) Assessing plant uptake and transport mechanisms of engineered nanomaterials from soil. MRS Bull 42:379–383

    CAS  Article  Google Scholar 

  • Mendonça MCP, Rizoli C, Ávila DS, Amorim MJB, de Jesus MB (2017) Nanomaterials in the environment: perspectives on in vivo terrestrial toxicity testing. Front Environ Sci 5:71

    Article  Google Scholar 

  • Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8(1):013001

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano level. Science 311:622–627

    CAS  Article  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    CAS  Article  Google Scholar 

  • Nicolodi M, Gianello C (2014) Understanding soil as an open system and fertility as an emergent property of the soil system. Sustain Agric Res 4(1):94

    Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    CAS  Article  Google Scholar 

  • Onac C, Alpoguz HK, Yola ML, Kaya A (2018) Transport of melamine by a new generation of nano-material membranes containing carbon nanotubes and determination with surface plasmon resonance. Innov Food Sci Emerg Technol 45:467–470

    CAS  Article  Google Scholar 

  • Patil A, Chirmade UN, Trivedi V, Lamprou DA, Urquart A, Douroumis D (2011) Encapsulation of water insoluble drugs in mesoporous silica nanoparticles using supercritical carbon dioxide. J Nanomed Nanotechnol 2:111

    CAS  Article  Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12

    Article  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack BJ (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109

    Article  Google Scholar 

  • Praveen A, Khan E, Perwez M, Sardar M, Gupta M (2018) Iron oxide nanoparticles as nano-adsorbents: a possible way to reduce arsenic phytotoxicity in indian mustard plant (Brassica juncea L.). J Plant Growth Reg 37(2):612–624

    CAS  Article  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1–3):323–328

    CAS  Article  Google Scholar 

  • Rehna VJ, Siddique A (2018) Risk evaluation and exposure hazards of engineered nanomaterials: a survey. Am J Eng Res 7(1):235–245

    Google Scholar 

  • Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642

    CAS  Article  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  • Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337–346

    CAS  Article  Google Scholar 

  • Salehi H, Chehregani A, Lucini L, Majd A, Gholami M (2018) Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ 616:1540–1551

    Article  CAS  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    CAS  Article  Google Scholar 

  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10:257–278

    Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    CAS  Article  Google Scholar 

  • Shang E, Li Y, Niu J, Zhou Y, Wang T, Crittenden JC (2017) Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles. Water Res 124:595–604

    CAS  Article  Google Scholar 

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–1609

    CAS  Article  Google Scholar 

  • Sonal S, Prabhakar V, Aneesh T, Sabitha M (2007) Nanomedicine: promise of the future in disease management. Internet J Nanotechnol 2(2):1–6

    Google Scholar 

  • Tang Y, He R, Zhao J, Nie G, Xu L, Xing B (2016) Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut 212:605–614

    CAS  Article  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-Hydroxy-2′-deoxyguanosine (8-OHDG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C 27:120–139

    CAS  Article  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha NN, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    CAS  Article  Google Scholar 

  • Vinković T, Novák O, Strnad M, Goessler W, Jurašin DD, Parađiković N, Vrček IV (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18

    Article  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC et al (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    CAS  Article  Google Scholar 

  • Wang P, Menzies NW, Dennis PG, Guo J, Forstner C, Sekine R, Lombi E, Kappen P, Bertsch PM, Kopittke PM (2016a) Silver nanoparticles entering soils via the wastewater–sludge–soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability. Environ Sci Technol 50(15):8274–8281

    CAS  Article  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016b) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    Google Scholar 

  • Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP et al (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161–1172

    CAS  Article  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    CAS  Article  Google Scholar 

  • Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20(12):8636–8648

    CAS  Article  Google Scholar 

  • Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31

    CAS  Article  Google Scholar 

  • Yola ML, Atar N (2017) A review: molecularly imprinted electrochemical sensors for determination of biomolecules/drug. Curr Anal Chem 13(1):13–17

    CAS  Article  Google Scholar 

  • Yola ML, Atar N (2018) Phenylethanolamine A (PEA) imprinted polymer on carbon nitride nanotubes/graphene quantum dots/core-shell nanoparticle composite for electrochemical PEA detection in urine sample. J Electrochem Soc 165(2):H1–H9

    CAS  Article  Google Scholar 

  • Yola ML, Atar N, Üstündağ Z, Solak AO (2013) A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J Electroanal Chem 698:9–16

    CAS  Article  Google Scholar 

  • Yola ML, Eren T, Atar N (2014) Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285

    CAS  Article  Google Scholar 

  • Yola ML, Eren T, Atar N (2016) A molecular imprinted voltammetric sensor based on carbon nitride nanotubes: application to determination of melamine. J Electrochem Soc 163(13):B588–B593

    CAS  Article  Google Scholar 

  • Yuan L, Richardson CJ, Ho M, Willis CW, Colman BP, Wiesner MR (2018) Stress responses of aquatic plants to silver nanoparticles. Environ Sci Technol 52(5):2558–2565

    CAS  Article  Google Scholar 

  • Zhang P, Ma Y, Liu S, Wang G, Zhang J, He X, Zhang J, Rui Y, Zhang Z (2017) Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut 220:1400–1408

    CAS  Article  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759

    CAS  Article  Google Scholar 

  • Zhu X, Hondroulis E, Liu W, Li CZ (2013) Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small 9(9–10):1821–1830

    CAS  Article  Google Scholar 

  • Zhu B, Xia X, Xia N, Zhang S, Guo X (2014) Modification of fatty acids in membranes of bacteria: implication for an adaptive mechanism to the toxicity of carbon nanotubes. Environ Sci Technol 48(7):4086–4095

    CAS  Article  Google Scholar 

  • Zhu B, Xia X, Zhang S, Tang Y (2018) Attenuation of bacterial cytotoxicity of carbon nanotubes by riverine suspended solids in water. Environ Pollut 234:581–589

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Botany, University of Lucknow, Lucknow, for the facilities. Kiran Gupta is thankful to University Grant Commission, New Delhi, India, for the award of the Postdoctoral fellowship for women. Author Sonal Dixit acknowledges DSKPDF Cell, Pune, India, and University Grant Commission, New Delhi, India, for award of D.S. Kothari Postdoctoral Fellowship (F4-2/2006 (BSR)/BL/15-16/0156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Srivastava.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Gupta, K., Dixit, S. et al. A review on positive and negative impacts of nanotechnology in agriculture. Int. J. Environ. Sci. Technol. 16, 2175–2184 (2019). https://doi.org/10.1007/s13762-018-2119-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-2119-7

Keywords

  • Agricultural usage
  • Growth
  • Metal oxides
  • Nanosensor
  • Nanotechnology
  • Reactive oxygen species