Abstract
The present study is focused on assessment of phytoremediation potential of selected plant species by removal of endosulfan from contaminated soil via plant uptake. Eight plant species were selected for pot experiment under controlled condition. From the field monitoring study, Vetiveria zizanioides was found to be accumulate more endosulfan as compared to others. In this experiment, the phytoremediation potential of V. zizanioides is further tested. Apart from V. zizanioides, eight locally available plant species, namely Phragmitis karka, Jatropha curcas, Brassica juncea, Vigna radiata, Solanum lycopersicum, Solanum melongena, Spinacia oleracea and Withania somnifera, were also tested against different concentrations of endosulfan (0–1500 μg g−1) the interval of at 500 μg g−1. Morphological parameters in terms of fresh weight, biomass, shoot length and root length were deliberate just after harvesting. The chlorophyll, carotenoids and lipid peroxidation were estimated in plant samples. Microbial biomass carbon (MBC), dehydrogenase activity (DHA), pH, electrical conductivity and endosulfan concentration were analyzed in soil before and after cropping. The result shows that there was a noteworthy difference at 95% confidence level in growth of experimental plants when compared with control. Enhanced MBC and DHA showed active degradation of endosulfan by microbes that proliferate due to secretion of root exudates of test plants. Among all the test plants, V. zizanioides accumulated the highest and B. juncea accumulated the lowest concentration of endosulfan in their tissues. No significant reduction in lipid peroxidation and chlorophyll content in V. zizanioides supports its suitability for phytoremediation.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abaga NOZ, Dousset S, Munier-Lamy C, Billet D (2013) Effectiveness of Vetiver grass (Vetiveria zizanioides L. Nash) for phytoremediation of endosulfan in two cotton soils from Burkina Faso. Int J Phytorem 16(1):95–108
ADLG (Analytical Detection Limit Guidance) (1996) Analytical detection limit guidance & laboratory guide for determining method detection limits. Wisconsin Department of Natural Resources Laboratory Certification Program
Aida M, Kozuyuki I, HiroakiI Naokuni H, Yasuo I, Kenji U (2006) Susceptibility of aquatic ferns to paddy herbicides bensulfuron methyl. Weed Biol Manag 4(3):127
Bacci E, Calamari D, Gaggi C, Vighi M (1990) Bioconcentration of organic chemical vapors in plant leaves: experimental measurements and correlation. Environ Sci Technol 24:885–889
Bacci E, Cerejeira MJ, Gaggi C, Chamello G, Calamari D, Vighi M (1992) Chlorinated dioxins: volatilization from soils and bioconcentration in plant leaves. Bull Environ Contam Toxicol 48:401–408
Battah MG, Shabana EF, Kobbia IA, Eladel HM (2001) Differential effects of thiobencarb toxicity on growth and photosynthesis of Anabaena variabilis with change in phosphate level. Ecotoxicol Environ Saf 49(3):235–239
Becerra-Castro C, Kidd PS, Rodríguez-Garrido B, Monterroso C, Santos-Ucha P, Prieto-Fernández A (2013) Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environ Pollut 178:202–210
Bhadauria BS, Mathur VB, Kaul R (2012) Monitoring of organochlorine pesticides in and around Keoladeo National Park, Bharatpur, Rajasthan, India. Environ Monit Assess 184:5295–5300
Breusegem FV, James FD (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384–390
Calveno Pereira RC, Monterroso C, Macías F (2010) Phytotoxicity of hexachlorocyclohexane: effect on germination and early growth of different plant species. Chemosphere 79:326–333
Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376
Chiou CT, Sheng G, Manes MA (2001) A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ Sci Technol 35:1437–1444
Chou CS, Chang C, Kaw CI (1978) Impact of water pollution of crop growth in Taiwan. Bot Bull Bot Sinica 19:107–124
Chouychai W, Hung L (2012) Phytotoxicity assay of crop plants to Lindane and alpha endosulfan contaminants in alkaline Thai soil. International journal of agriculture and biology 14:734–738
Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut 158:1980–1983
Devi NL, Chakraborty P, Shihua Q, Zhang G (2013) Selected organochlorine pesticides (OCPs) in surface soils from three major states from the north eastern part of India. Environ Monit Assess 185(8):6667–6676
Duxbury AC, Yentsch CS (1956) Plankton pigment monographs. J Mar Res 15:92–101
Eevers N, White JC, Vangronsveld J, Weyens N (2017) Bio-and Phytoremediation of pesticide-contaminated environments: a review. Adv Bot Res (in press). Corrected Proof, Available online 11 March 2017
EL-Shahate RM, EL-Araby MMI, Eweda EW, El-Berashi MN (2011) Evaluation of the effect of three different pesticides on Azolla pinnata growth and NPK uptake. J Am Sci 7(1):1020–1031
Enhelling FA, Muth MS, Schon MK (1985) Effect of allelochemicals on plant-water relationship. In: Thomson AC (ed) The chemistry of allelopathy. American Chemical Society, Washington, DC
Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizo-sphere of alfalfa (Medicago sativa L.). Chemosphere 71:1593–1598
Favas PJC, Pratas J, Varun M, D’Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Sci Total Environ 470(1):993–1002
Gao Y, Zhu L (2004) Plant uptake accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178
Heath RL, Packer L (1968) Photo peroxidation in isolated chloroplast I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of alpha and beta endosulfan by soil bacteria. Biodegradation 18:731–740
Ishtiaq S, Mahmood S (2011) Phytotoxicity of nickel and its accumulation in tissues of three Vigna species at their early growth stages. J Appl Bot Food Qual 84:223–228
Kaushik CP, Sharma HR, Kaushik A (2012) Organochlorine pesticide residue in drinking water in the rural areas of the Haryana, India. Environ Monit Assess 184:103–112
Kwon GS, Kim JE, Kim TK, Sohn HY, Koh SC, Shin KS, Kim DG (2002) Klebsiella pneumonia KE-1 degrades endosulfan without formation of the toxic metabolite, endosulfan sulfate. FEMS Microbiol Lett 215:255–259
Kwon GS, Sohn HY, Shin KS, Kim E, Seo BI (2005) Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl Microbiol Biotechnol 67:845–850
Loibner AP, Farthofer R, Braun R (1998) Aerobic degradation of Hexachlorocyclohexane isomers in soil monitored by using an online GC–MS system. In: Proceedings of the 4th international symposium and exhibition on environmental contamination on central and eastern Europe, Warsaw, pp 548–552
Lu JLDP (2010) Multi pesticide residue assessment of agricultural soil and water in major farming areas in Benguet, Philippines. Arch Environ Contam Toxicol 59:175–181
Machalachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41:1053–1062
Makris KC, Shakya M, Datta R, Sarkar D, Pachanoor D (2007) High uptake of 2,4,6-trinitrotoluene by vetiver grass potential for phytoremediation. Environ Pollut 146:1–4
Marcacci S, Raveton M, Ravanel P, Schwitzguebel JP (2006) Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Environ Exp Bot 56:205–215
Masood A, Zeeshan M, Abraham G (2008) Acta Biol Hung 247–257. Aida M, Ikeda H Itoh K, Usui K Ecotox Environ Saf 63:463–468
Menezes RG, Qadir TF, Moin A, Fatima H, Senthilkumaran S (2017) Endosulfan poisoning: an overview. J Forensic Leg Med 51:27–33
Mersie W, Singh M (1993) Phenolic acid affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. J Chem Ecol 19:1293–1297
Mishra S, Srivastava S, Tripathi RD, Govindrajan R, Kuriakose SV, Prasda MNV (2006) Phytocheletin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37
Nakajima DJY, Suzuki J, Suzuki S (1995) Seasonal changes in the concentration of polycyclic aromatic hydrocarbons in azalea leaves and relationship to the atmospheric concentration. Chemosphere 30:409–418
Paterson S, Mackay D (1994) A model of organic chemical uptake by plants from soil and the atmosphere. Environ Sci Technol 28:2259–2265
Polder MD, Hulzebos EM, Jager DT (1995) Validation of models on uptake of organic chemicals by plant roots. Environ Toxicol Chem 14(1615):1623
POPRC (2009) Decision POPRC-4/5 on endosulfan fulfilling the screening criteria of the Stockholm Convention. http://www.pops.int POPRC-4 meeting report. Antonious GF, Byers ME (1997) Fate and movement of endosulfan under field conditions. Environ Toxicol Chem 16:644–649
Quilchano C, Maranon T (2002) Dehydrogenase activity in mediterranean forest soils. Biol Fertil Soils 35:102–107
Rice CP, Chernyak SM, Hapeman CJ, Biboulian S (1997) Air–water distribution of the endosulfan isomers. J Environ Qual 26:1101–1106
Schmidt WF, Bilboulian S, Rice CP, Fettinger JC, McConnell LL, Hapeman CJ (2001) Thermodynamic, spectroscopic, and computational evidence for the irreversible conversion of alpha to beta-endosulfan. J Agric Food Chem 49:5372–5376
Scroll R, Bierling B, Cao G, Dorfler U, Lahanaiti M (1994) Uptake pathway of organic chemicals from soil by agricultural plants. Chemosphere 28:297–303
Sengupta PK, Chakraborti A, Banerjee SK (1986) Biochemical changes induced by toxic concentration of malathion in germinating wheat seeds. Curr Sci 55:492–494
Sethunathan N, Megharaj M, Chen ZL, Williams BD, Lewis G, Naidu R (2004) Algal degradation of a known endocrine disrupting insecticide, endosulfan and its metabolite, endosulfan sulfate in liquid medium and soil. J Agric Food Chem 52:3030–3035
Shaikh IR, Shaikh PR, Shaikh RA, Shaikh AS (2013) Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India. Res J Chem Sci 3(6):14–23
Siddique ZS, Ahmad S (2000) Effect of synthetic fungicide on nutritive composition of diseased and healthy plants of Triticum aestivum L. Pak J Biol Sci 3:2148–2150
Siddique ZS, Ahmad S, Gulzar S (1997) Effect of topsin-M(Methyl-thiophenate) and bayleton (Triademifon) on seedling growth, biomass, nodulation and phenolic content of Sesbania sesban. Bangladesh J Bot 26:127–130
Simonich SL, Hites RA (1994) Vegetation atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 28:939–943
Singh V, Singh N (2014) Uptake and accumulation of endosulfan isomers and its metabolite endosulfan sulfate in naturally growing plants of contaminated area. Ecotoxicol Environ Saf 104:189–193
Singh BK, Munro S, Reid E, Ord B, Potts JM, Patterson E, Millard P (2006) Investing microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. Eur J Soil Sci 57:72–82
Singh V, Singh P, Singh N (2016) Synergistic influence of Vetiveria zizanioides and selected rhizospheric microbial strains on remediation of endosulfan contaminated soil. Ecotoxicology 25(7):1327–1337
Sinha S, Mallick S, Mishra RK, Singh S, Basant A, Gupta AK (2007) Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge—amended and contaminated soils: effect on lipid peroxidation, morpho anatomical changes and anti oxidants. Chemosphere 67:176–187
Stepniewska Z, Wolinska A (2005) Soil dehydrogenase activity in the presence of chromium (III) and (VI). Int Agrophys 19:79–83
Trapp S, Matthies M, Scheunert I, Topp EM (1990) Modeling the bioconcentration of organic chemicals in plants. Environ Sci Technol 24(8):1246–1252
Turner RC, Marshal C (1972) Accumulation of zinc by subcellular fraction of some root argotic teneys in relation to zinc tolerance. New Phyton 71:671–676
Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass carbon. Soil Biol Biochem 19:703–707
Walse SS, Scott GI, Ferry JL (2003) Stereoselective degradation of aqueous endosulfan in modular estuarine mesocosms: formation of endosulfan γ hydroxycarboxylate. J Environ Monit 5:373–579
Wang M, Jones KC (1994) Uptake of chlorobenzenes by carrots from spiked and sewage sludge-amended soil. Environ Sci Technol 28:1260–1267
Wang MC, Chen YT, Chen SH, Chien SWC, Sunkara SV (2012) Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere 87(3):217–225
Welsch-Pausch K, McLachlan MS, Umlauf G (1995) Determination of the principal pathways of polychlorinated dibenzo-p-dioxins and dibenzofurans to Lolium multiflorum (Welsh Ray Grass). Environ Sci Technol 29:1090–1098
Wieczorek JK, Wieczorek ZJ (2007) Phytotoxicity and accumulation of anthracene applied to the foliage and sandy substrate in lettuce and radish plants. Ecotoxicol Environ Saf 66:369–377
Willet KL, Utrich EM, Hites RA (1998) Differential toxicity and environmental facts of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207
Xie HJ, Gao FW, Tan W, Wang SG (2011) A short-term study on the interaction of bacteria, fungi and endosulfan in soil microcosm. Sci Total Environ 412–413:375–379
Acknowledgements
The authors desire to show gratitude to Department of Science and Technology (DST) for economic support as WOS-A project (SR/WOS-A/LS-257/2009). The authors also desire to thank Director, Council of Scientific and Industrial Research—National Botanical Research Institute (CSIR-NBRI) for providing essential amenities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Editorial responsibility: Xiao-Zhang Yu.
Rights and permissions
About this article
Cite this article
Singh, V., Lehri, A. & Singh, N. Assessment and comparison of phytoremediation potential of selected plant species against endosulfan. Int. J. Environ. Sci. Technol. 16, 3231–3248 (2019). https://doi.org/10.1007/s13762-018-1880-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13762-018-1880-y


