Skip to main content

Optimization of process variables by the application of response surface methodology for dye removal using nanoscale zero-valent iron

Abstract

The study investigated the degradation and removal of Acid Red 114 (AR-114) and Basic Blue 41 (BB-41) as a model of azo dyes of aqueous solutions by using nanoscale zero-valent iron (NZVI). Both the size and the surface morphology of NZVI particles were specified by XRD and SEM techniques. The removals of AR-114 and BB-41 were studied at different experimental conditions, including catalyst amount, dye concentration, solution pH and the contact time. The removal parameters were modeled by response surface methodology. Given the low P value (< 0.0001), high F value (more than 85 for both dyes), R2 = 98.76% and Adj-R2 = 97.61% for AR-114 and R2 = 99.50% and Adj-R2 = 99.04% for BB-41 and nonsignificant lack of fit for both dyes. Given the ANOVA results, there is a positive relationship between the experimental and predicted values of the response. The results indicated that NZVI particles had removed more than 94% of both dyes under the optimum operational conditions. The optimum catalyst amount, dye concentration, pH of the solution and contact time were found to be 0.40 g, 4.00 mgL−1, 5.00 and 106.00 s, respectively, for AR-114 and those for BB-41 were 0.80 g, 9.00 mgL−1, 9.00 and 205.00 s, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3):997–1026

    Article  CAS  Google Scholar 

  • Ali I (2010) The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sep Purif Rev 39(3–4):95–171

    Article  CAS  Google Scholar 

  • Ali I (2014) Water treatment by adsorption columns: evaluation at ground level. Sep Purif Rev 43(3):175–205

    Article  CAS  Google Scholar 

  • Ali I, AL-Othman ZA, Alwarthan A (2016) Molecular uptake of congo red dye from water on iron composite nano particles. J Mol Liq 224:171–176

    Article  CAS  Google Scholar 

  • Alkhatib MF, Mamun AA, Akbar I (2015) Application of response surface methodology (RSM) for optimization of color removal from POME by granular activated carbon. Int J Environ Sci Technol 12(4):1295–1302

    Article  CAS  Google Scholar 

  • Al-Khatib MAFR, Alam M, Mohammed R (2012) Statistical modelling optimisation of cellulase enzyme immobilisation on functionalised multi-walled carbon nanotubes for empty fruit bunches degradation. Aust J Basic Appl Sci 6(1):30–38

    CAS  Google Scholar 

  • Almeelbi T, Bezbaruah A (2012) Aqueous phosphate removal using nanoscale zero-valent iron. J Nanopart Res 14(7):900

    Article  Google Scholar 

  • Amosa MK, Jami MS, Ma’an FR, Jimat DN, Muyibi SA (2015) A two-step optimization and statistical analysis of COD reduction from biotreated POME using empty fruit bunch-based activated carbon produced from pyrolysis. Water Quality, Exposure and Health 7(4):603–616

    Article  CAS  Google Scholar 

  • Arıca MY, Bayramoğlu G (2007) Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J Hazard Mater 149(2):499–507

    Article  Google Scholar 

  • Asgher M, Bhatti HN (2011) Optimization of adsorption variables for removal of anionic dyes by Citrus sinensis biomass using response surface methodology. Fresenius Environ Bull 20(8):496

    Google Scholar 

  • Bezbaruah AN, Shanbhogue SS, Simsek S, Khan E (2011) Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. J Nanopart Res 13:6673–6681

    Article  CAS  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977

    Article  CAS  Google Scholar 

  • Cao JS, Wei LP, Huang QG, Wang LS, Han SK (1999) Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38:565–571

    Article  CAS  Google Scholar 

  • Cao J, Elliott D, Zhang WX (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7(4):499–506

    Article  CAS  Google Scholar 

  • Celebi O, Üzüm Ç, Shahwan T, Erten HN (2007) A radiotracer study of the adsorption behavior of aqueous Ba2 + ions on nanoparticles of zero-valent iron. J Hazard Mater 148(3):761–767

    Article  CAS  Google Scholar 

  • Chafi M, Gourich B, Essadki AH, Vial C, Fabregat A (2011) Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination 281:285–292

    Article  CAS  Google Scholar 

  • Chieng HI, Lim LB, Priyantha N (2015) Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies. Environ Technol 36(1):86–97

    Article  CAS  Google Scholar 

  • Chompuchan C, Satapanajaru T, Suntornchot P, Pengthamkeerati P (2010) Decolorization of reactive black 5 and reactive red 198 using nanoscale zerovalent iron. Int J Environ Sci Eng 2(3):123–127

    Google Scholar 

  • Dutta S, Saha R, Kalita H, Bezbaruah AN (2016) Rapid reductive degradation of azo and anthraquinone dyes by nanoscale zero-valent iron. Environ Technol Innov 5:176–187

    Article  Google Scholar 

  • Fan J, Guo Y, Wang J, Fan M (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 166(2):904–910

    Article  CAS  Google Scholar 

  • Greluk M, Hubicki Z (2011) Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalination 278(1):219–226

    Article  CAS  Google Scholar 

  • Han R, Ding D, Xu Y, Zou W, Wang Y, Li Y, Zou L (2008) Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresour Technol 99(8):2938–2946

    Article  CAS  Google Scholar 

  • Havuz T, Dönmez B, Çelik C (2010) Optimization of removal of lead from bearing-lead anode slime. J Ind Eng Chem 16(3):355–358

    Article  CAS  Google Scholar 

  • He Y, Gao J-F, Feng F-Q, Liu C, Peng Y-Z, Wang S-Y (2012) The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chem Eng J 179:8–18

    Article  CAS  Google Scholar 

  • Kalantari K, Ahmad MB, Masoumi HRF, Shameli K, Basri M, Khandanlou R (2014) Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology. Int J Mol Sci 15:12913–12927

    Article  CAS  Google Scholar 

  • Kobya M, Gengec E, Sensoy MT, Demirbas E (2014) Treatment of textile dyeing wastewater by electrocoagulation using Fe and Al electrodes: optimisation of operating parameters using central composite design. Colo Technol 130(3):226–235

    Article  CAS  Google Scholar 

  • Krajangpan S, Kalita H, Chisholm BJ, Bezbaruah AN (2012) Iron nanoparticles coated with amphiphilic polysiloxane graft copolymers: dispersibility and contaminant treatability. Environ Sci Technol 46:10130–10136

    CAS  Google Scholar 

  • Kumar SNA, Ritesh SK, Sharmila G, Muthukumaran C (2013) Extraction optimization and characterization of water soluble red purple pigment from floral bracts of Bougainvillea glabra. Arab J Chem 10:S2145

    Article  Google Scholar 

  • Kusvuran E, Gulnaz O, Irmak S, Atanur OM, Yavuz HI, Erbatur O (2004) Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution. J Hazard Mater 109(1):85–93

    Article  CAS  Google Scholar 

  • Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111(19):6939–6946

    Article  CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122

    Article  CAS  Google Scholar 

  • Lin YT, Weng CH, Chen FY (2008) Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol 64(1):26–30

    Article  CAS  Google Scholar 

  • Mao Y, Xi Z, Wang W, Ma C, Yue Q (2015) Kinetics of solvent blue and reactive yellow removal using microwave radiation in combination with nanoscale zero-valent iron. J Environ Sci 30:165–172

    Article  Google Scholar 

  • Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168(2):806–812

    Article  CAS  Google Scholar 

  • Nidheesh PV, Gandhimathi R, Ramesh ST (2013) Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res 20(4):2099–2132

    Article  CAS  Google Scholar 

  • Phukan M, Noubactep C, Licha T (2015) Characterizing the ion-selective nature of Fe-0-based filters using azo dyes. Chem Eng J 259:481–491

    Article  CAS  Google Scholar 

  • Rahman N, Abedin Z, Hossain MA (2014) Rapid degradation of azo dyes using nano-scale zero valent iron. Am J Environ Sci 10(2):157–163

    Article  CAS  Google Scholar 

  • Rizzo L, Koch J, Belgiorno V, Anderson MA (2007) Removal of methylene blue in a photocatalytic reactor using polymethylmethacrylate supported TiO2 nanofilm. Desalination 211(1):1–9

    Article  CAS  Google Scholar 

  • Shafeeyan MS, Daud WMAW, Houshmand A, Arami-Niya A (2012) The application of response surface methodology to optimize the amination of activated carbon for the preparation of carbon dioxide adsorbents. Fuel 94:465–472

    Article  CAS  Google Scholar 

  • Shojaei S, Shojaei S (2017) Experimental design and modeling of removal of acid green 25 dye by nanoscale zero-valent iron. Euro-Mediterr J Environ Integr 2(1):15

    Article  Google Scholar 

  • Shojaei S, Khammarnia S, Shojaei S, Sasani M (2017a) Removal of reactive red 198 by nanoparticle zero valent iron in the presence of hydrogen peroxide. J Water Environ Nanotechnol 2(2):129–135

    CAS  Google Scholar 

  • Shojaei S, Shojaei S, Sasani M (2017b) The efficiency of eliminating direct red 81 by zero-valent iron nanoparticles from aqueous solutions using response surface model (RSM). Model Earth Syst Environ 3(1):27

    Article  Google Scholar 

  • Shu HY, Chang MC, Chang CC (2009) Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution. J Hazard Mater 167(1):1178–1184

    Article  CAS  Google Scholar 

  • Shu H-Y, Chang M-C, Liu J-J (2016) Reductive decolorization of acid blue 113 azo dye by nanoscale zero-valent iron and iron-based bimetallic particles. Desalin Water Treat 57:7963–7975

    Article  CAS  Google Scholar 

  • Sun H, Wang L, Zhang R, Sui J, Xu G (2006a) Treatment of groundwater polluted by arsenic compounds by zero valent iron. J Hazard Mater 129(1):297–303

    Article  CAS  Google Scholar 

  • Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006b) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120(1):47–56

    Article  CAS  Google Scholar 

  • Zhao G, Li M, Hu Z, Hu H (2005) Dissociation and removal of complex chromium ions containing in dye wastewaters. Sep Purif Technol 43(3):227–232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University of Payame Noor, for kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shojaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Editorial responsibility: Q. Aguilar-Virgen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shojaei, S., Shojaei, S. Optimization of process variables by the application of response surface methodology for dye removal using nanoscale zero-valent iron. Int. J. Environ. Sci. Technol. 16, 4601–4610 (2019). https://doi.org/10.1007/s13762-018-1866-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1866-9

Keywords

  • Response surface methodology
  • Central composite design
  • Zero-valent iron nanoparticle
  • Dye removal
  • Azo dyes