Skip to main content
Log in

Heavy metal assessment in stream sediments from the rivers passing through the mining area

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Stream sediment samples in two sizes of sand and clay/silt from the Chodarchay and Gilankesheh rivers which pass through the Chodarchay copper deposit, northwestern Iran, were measured for their metal concentrations using a sequential extraction procedure. The average concentrations of cadmium (18.22) in sediments from the rivers exceed the world average shale and continental upper crust values. Based on Geo-accumulation Index, cadmium is intensely elevated (in the clay fraction greater than 5 and in the sand fraction between 3 and 5), arsenic and lead are slightly elevated in a few stations and others are not-elevated. The zinc and copper values are almost equal to or lower than Geo-accumulation Index; thus, the sediments are unpolluted with respect to zinc and copper. Enrichment factor values confirm the risk of cadmium in the environment. Comparison of the mean heavy metal concentrations in the sediments with threshold effect concentration and probable effect concentration values shows that cadmium (clay/sand = 15.23/7.77) is higher than the threshold effect concentration and probable effect concentration values, while copper (13.41/7.71), lead (6.38/9.18), zinc (18.26/8.19), and arsenic (3.60/1.14) are lower than the threshold effect concentration values. The cadmium and lead could cause serious danger for river biota. Based on pollution intensity, sediment samples from both rivers are divided into low to highly enriched in lead, zinc, and copper, very high to intensely enriched in arsenic, and intensely enriched in cadmium and arsenic. The majority of metals are observed in the clay/silt fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramovitch RA, Huang BZ, Davis M, Peters L (2003) In situ remediation of soils contaminated with toxic metal ions using microwave energy. Chemosphere 53:1077–1085

    Article  CAS  Google Scholar 

  • Agarwal S, Tyagi I, Gupta VK, Bagheri AR, Ghaedi M, Asfaram A, Hajati S, Bazrafshan AA (2016) Rapid adsorption of ternary dye pollutants onto copper(I) oxide nanoparticle loaded on activated carbon: experimental optimization via response surface methodology. J Environ Chem Eng 4(2):1769–1779

    Article  CAS  Google Scholar 

  • Ali I (2006) Instrumental methods in metal ions speciation: chromatography, capillary electrophoresis and electrochemistry. Taylor & Francis Ltd., New York

    Book  Google Scholar 

  • Ali I, Aboul-Enein HY, Gupta VK (2009) Nanochromatography and nanocapillary electrophoresis: pharmaceutical and environmental analyses. Wiley, Hoboken

    Book  Google Scholar 

  • Ali I, Gupta VK, Mohd Asim TAK (2012) Removal of arsenate from aqueous solution by electro-coagulation method using Al–Fe electrodes. Int J Electrochem Sci 7:1898–1907

    CAS  Google Scholar 

  • Ali I, Al-Othman ZA, Alwarthan A (2016a) Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J Mol Liq 219:858–864

    Article  CAS  Google Scholar 

  • Ali I, Al-Othman ZA, Alwarthan A (2016b) Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J Mol Liq 221:1168–1174

    Article  CAS  Google Scholar 

  • Ali I, Al-Othman ZA, Alwarthan A (2016c) Molecular uptake of Congo red dye from water on iron composite nano particles. J Mol Liq 224:171–176

    Article  CAS  Google Scholar 

  • Ali I, Al-Othman ZA, Alwarthan A (2017) Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J Mol Liq 236:205–213

    Article  CAS  Google Scholar 

  • Anderson A, Mitchell P (2003) Treatment of mercury-contaminated soil, mine waste and sludge using silica micro-encapsulation. TMS Annual Meeting. Extraction and Processing Division, San Diego, CA, pp 265–274

  • Armitage PD, Bowes MJ, Vincent HM (2007) Long-term changes in macroinvertebrate communities of a heavy metal polluted stream, the River Nent (Cumbria, UK) after 28 years. River Res App 23:997–1015

    Article  Google Scholar 

  • Asfaram A, Ghaedi M, Agarwal S, Tyagi I, Gupta VK (2015) Adsorption of copper (II) using modified activated carbon prepared from pomegranate wood: optimization by bee algorithm and response surface methodology author links open overlay panel. RSC Adv 5(24):18438–18450

    Article  CAS  Google Scholar 

  • Asfaram A, Ghaedi M, Ghezelbash GR, Alipanahpour E, Inderjeet D, Tyagi I, Agarwald S, Gupta VK (2016) Biosorption of malachite green by novel biosorbent Yarrowia lipolytica isf7: application of response surface methodology. J Mol Liq 214:249–258

    Article  CAS  Google Scholar 

  • Astrom M, Nylund K (2000) Impact of historical metal works on the concentrations of major and trace elements in sediments: a case study in Finland. Appl Geochem 15:807–817

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  • Birch GF, Taylor SE, Matthai C (2001) Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: a review and some new concepts. Environ Pollut 113:357–372

    Article  CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, New York

    Google Scholar 

  • Byrne P, Reid I, Wood PJ (2010) Sediment geochemistry of streams draining abandoned lead/zinc mines in central Wales, the Afon Twymyn. J Soil Sediment 10:683–697

    Article  CAS  Google Scholar 

  • Calmano W, Hong J, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235

    Article  CAS  Google Scholar 

  • Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S (2006) Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology 5(1):1–4

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Dastkhoon M, Ghaedi M, Asfaram A, Goudarzi A, Mehdizadeh Langroodi S, Tyagi I, Agarwal S, Gupta VK (2015) Ultrasound assisted adsorption of malachite green dye onto ZnS:Cu-NP-AC: equilibrium isotherms and kinetic studies—response surface optimization. Sep Purif Technol 156:780–788

    Article  CAS  Google Scholar 

  • Dehghani MH (2016) Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J Mol Liq 215:671–679

    Article  CAS  Google Scholar 

  • Dennis IA, Coulthard TJ, Brewer P, Macklin MG (2009) The role of floodplains in attenuating contaminated sediment fluxes in formerly mined drainage basins. Earth Surf Proc Land 34:453–466

    Article  CAS  Google Scholar 

  • Dermatas D, Meng X (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol 70:377–394

    Article  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    Article  CAS  Google Scholar 

  • Diels L, Geets J, Dejonghe W, Roy SV, Vanbroekhoven K, Szewczyk A, Malina G (2005) Heavy metal immobilization in groundwater by in situ bio-precipitation: comments and questions about carbon source use, efficiency and sustainability of the process. In: 9th International mine water congress

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford

    Google Scholar 

  • Forghani G, Moore F, Lee S (2009) Geochemistry and speciation of metals in sediments of the Maharlu saline lake, Shiraz, SW Iran. Environ Earth Sci 59:173–184

    Article  CAS  Google Scholar 

  • Förstner U, Müller G (1981) Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments: geochemical background, man’s influence and environmental impact. Geo J 5:417–432

    Google Scholar 

  • Förstner U, Wittmann GTW (1983) Metal pollution in aquatic environment, 2nd edn. Springer, Berlin

    Google Scholar 

  • Galan E, Gomez-Ariza JL, González I, Fernández-Caliani JC, Morales E, Morales I (2002) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Geochem 18:409–421

    Article  Google Scholar 

  • Gammons CH, Shop CL, Duaime TE (2005) A 24 h investigation of the hydrogeochemistry of base flow and storm water in an urban area impacted by mining, Butte. Hydrol Process 19:2737–2753

    Article  CAS  Google Scholar 

  • Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A, Gupta VK (2015) Modeling of competitive ultrasonic assisted removal of the dyes—methylene blue and safranin-O using Fe3O4 nanoparticles. Chem Eng J 268:28–37

    Article  CAS  Google Scholar 

  • Ghaedi M, Rahimi MR, Ghaedi AM, Tyagi I, Agarwal S, Gupta VK (2016) Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood. J Colloid Interf Sci 461:425–434

    Article  CAS  Google Scholar 

  • Ghazban F, Parizanganeh A, Zamani A, Taghilou B (2015) Assessment of heavy metal pollution in water and sediments from the Ghalechay River, Baychebagh copper mine area, Iran. Soil Sediment Contam 24:172–190

    Article  CAS  Google Scholar 

  • Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1:59–66

    Article  CAS  Google Scholar 

  • Gower AM, Myers ME, Kent M, Foulkes ME (1994) Relationships between macroinvertebrate communities and environmental variables in metal-contaminated streams in south-west England. Freshw Biol 32:199–221

    Article  Google Scholar 

  • Grimshav DL, Lewin J, Fuge R (1976) Seasonal and short-term variations in the concentration and supply of dissolved zinc to polluted aquatic environments. Environ Pollut 11:1–7

    Article  Google Scholar 

  • Gupta VK, Ali I (2013) Environmental water: advances in treatment, remediation and recycling. Elsevier, Amsterdam

    Google Scholar 

  • Horowitz AJ (1991) A primer on sediment–trace element chemistry. Lewis Publishers, London

    Book  Google Scholar 

  • Horowitz AJ, Elrick KA (1987) The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl Geochem 2:437–451

    Article  CAS  Google Scholar 

  • Huu HH, Rudy S, Damme AV (2010) Distribution and contamination status of heavy metals in estuarine sediments near Cau Ong Harbor, Ha Long Ba, Vietnam. Geol Belg 13:37–47

    Google Scholar 

  • Ijaz N (2018) Artificial neural network modelling of amido black dye sorption on iron composite nanomaterial: kinetics and thermodynamics studies. J Mol Liq 250:1–8

    Article  CAS  Google Scholar 

  • Isoyama M, Wada SI (2007) Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allo-phanic soil. J Hazard Mater 143:636–642

    Article  CAS  Google Scholar 

  • Jain CK (2004) Metal fractionation study on bed sediments of river Yamuna, India. Water Res 38:569–578

    Article  CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  • Kumar SP, Edward JKP (2009) Assessment of metal concentration in the sediment cores of Manakudy estuary, southwest coast of India. Indian J Geo-Mar Sci 38:235–248

    CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Lee J, Chon H, Kim K (2005) Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environ Geochem Health 27:185–191

    Article  CAS  Google Scholar 

  • Leist M, Casey RJ, Caridi D (2003) The fixation and leaching of cement stabilized arsenic. Waste Manag 23:353–359

    Article  CAS  Google Scholar 

  • Llewellyn TO (1992) Cadmium. In: Minerals year book, vol. 1: Metals and Minerals, U.S. Bureau of Mines, pp 271–276

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Luoma SN (2000) Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Furness RW, Rainbow PS (eds) Heavy Metals in the Marine Environment. CRC Press, Boca Raton, FL, pp 51–66

    Google Scholar 

  • MacDonald DD, Ingersoll CG, Breger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for fresh water ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Macklin MG, Brewer PA, Hudson-Edwards KA, Bird G, Coulthard TJ, Dennis IA, Lechler PJ, Miler JR, Turner JN (2006) A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 79:423–447

    Article  Google Scholar 

  • Meagher RB (2000) Hytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Milu V, Leroy JL, Peiffert C (2002) Water contamination downstream from a copper mine in the Apuseni Mountains, Romania. Environ Geoj 42:773–782

    Article  CAS  Google Scholar 

  • Moon DH, Wazne M, Yoon IH, Grubb DG (2008) Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils. J Hazard Mater 159:512–518

    Article  CAS  Google Scholar 

  • Morillo J, Usero J, Gracia I (2002) Partitioning of metals in sediments from the Odiel River (Spain). Environ Int 28:263–271

    Article  CAS  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geo J 2:108–118

    Google Scholar 

  • Mulligan CM, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163

    Article  CAS  Google Scholar 

  • Nazari H, Salamati R (1998) 1:100,000 scale geological map of the Roudbar quadrangle. Geological Survey of Iran

  • Neal C, Whitehead PG, Jeffery H, Neal M (2005) The water quality of River Carnon, west Cornwall, November 1992 to March 1994, the impact of Wheal Jane discharge. Sci Total Environ 338:23–29

    Article  CAS  Google Scholar 

  • Owor M, Hartwig T, Muwanga A, Zackmann D, Pohl W (2006) Impact of tailing from the Kilembe copper mining district on Lake George, Uganda. Environ Geol 51:1065–1075

    Article  CAS  Google Scholar 

  • Pagnanelli F, Moscardini E, Giuliano V, Toro L (2004) Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Environ Pollut 132:189–201

    Article  CAS  Google Scholar 

  • Park JM, Lee JS, Lee JU, Chon HT, Jung MC (2006) Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J Geochem Explor 88:134–138

    Article  CAS  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  CAS  Google Scholar 

  • Perin G, Bonardi M, Fabris R, Simoncini B, Manente S (1997) Heavy metal pollution in central Venice Lagoon bottom sediments: evaluation of the metal bioavailability by geochemical speciation procedure. Environ Technol 8:593–604

    Article  Google Scholar 

  • Rafiei B, Bakhtiari Nejad M, Hashemi M, Khodaei AS (2010) Distribution of heavy metals around the Dashkasan Au Mine. Int J Environ Res 4:647–654

    CAS  Google Scholar 

  • Reddy KR, Adams JA (2010) Towards green and sustainable remediation of contaminated site. In: 6th International congress on environmental geotechnics, New Delhi, India

  • Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta VK (2016) Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem Eng J 284:687–697

    Article  CAS  Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin

    Book  Google Scholar 

  • Sherwood LJ, Qualls RG (2001) Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environ Sci Technol 35:4126–4131

    Article  CAS  Google Scholar 

  • Singh TS, Pant KK (2006) Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J Hazard Mater 131:29–36

    Article  CAS  Google Scholar 

  • Stone M, Droppo IG (1996) Distribution of lead, copper and zinc in size-fraction river bed sediment into agricultural catchments of southern Ontario, Canada. Environ Pollut 93:353–362

    Article  CAS  Google Scholar 

  • Sullivan C, Tyrer M, Cheeseman CR, Graham NJD (2010) Disposal of water treatment wastes containing arsenic: a review. Sci Total Environ 408:1770–1778

    Article  CAS  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks. Blackwell, London

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 7:844–850

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1982) Particulate trace metals speciation in stream sediments and relationship with grain size: implication for geochemical exploration. J Geochem Explor 6:77–104

    Article  Google Scholar 

  • Tokunaga S, Park SW, Ulmanu M (2005) Extraction behaviour of metallic contaminants and soil constituents from contaminated soils. Environ Technol 26:673–682

    Article  CAS  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the element in some major units of the Earth’s crust. Bull Geol Soc Am 72:175–192

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (2008) Green remediation: incorporating sustainable environmental practices into remediation of contaminated sites. Office of Solid Waste and Emergency Response, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Wait ST, Thomas D (2003) The characterization of base oil recovered from the low temperature thermal desorption of drill cuttings. In: SPE/EPA exploration and production environmental conference, San Antonio, TX, pp 151–158

  • Williamson B, Lewis G, Mills G, Vant B (2003) Contaminants on the coast. In: Goff JR, Nichol SL, Rouse HL (eds) The New Zealand coast: Te Tai o Aotearoa. Dunmore Press, Palmerston, pp 237–259

    Google Scholar 

  • Windom HS, Schropp F, Calder J, Ryan R, JrL Smith, Burney FL, Rawlinson C (1989) Natural trace metal concentrations in estuarine and coastal marine sediments of the southeastern United States. Environ Sci Technol 23:314–320

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE, Imborvungu JA (2010) Removal of heavy metals from a contaminated soil using organic chelating acids. J Environ Sci Technol 7(3):485–496

    CAS  Google Scholar 

  • Zhang J, Liu C (2002) Riverine composition and estuarine geochemistry of particulate metals in China, weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    Article  CAS  Google Scholar 

  • Zimmerman AJ, Weindorf DC (2010) Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedures. Int J Anal Chem 1–7

Download references

Acknowledgements

This paper is part of the first author’s Ph.D. thesis project. Financial support was provided by the Tarbiat Modares University of Iran. Appreciation is extended to Madankaran Angouran Company for generously providing field survey facilities. We would like to thank the two anonymous reviewers for their constructive reviews on the manuscript. Careful editorial handling of the manuscript by Majid Abbaspour is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghaderi.

Additional information

Editorial responsibility: M. Abbaspour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasami, N., Ghaderi, M. & Taghilou, B. Heavy metal assessment in stream sediments from the rivers passing through the mining area. Int. J. Environ. Sci. Technol. 16, 4355–4374 (2019). https://doi.org/10.1007/s13762-018-1840-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1840-6

Keywords

Navigation