Skip to main content
Log in

Coupling of zero-valent magnesium or magnesium–palladium-mediated reductive transformation to bacterial oxidation for elimination of endosulfan

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The feasibility of employing sequential treatment method for detoxification of endosulfan using metal-mediated reductive reactions followed by bacterial oxidation was demonstrated. Gas chromatography revealed that zero-valent magnesium (Mg0) was able to remove 70% of 10 mg L−1 of endosulfan, while the bimetallic system, Mg0/Pd0–carbon, was able to remove 92% of 10 mg L−1 of endosulfan after 30 min of reaction. Monometallic and bimetallic systems resulted in the accumulation of lower chlorinated compounds and hydrocarbon end product(s) in the reaction medium. Lower chlorinated and dechlorinated products were subjected to aerobic biodegradation using the bacterial isolate, Agrobacterium strain PT-3. Residual concentrations of endosulfan isomers and products were reduced to below-detectable levels following 3.5 to 4 h of biological treatment. Recycling of immobilized Pd0 (Pd0–carbon) is required to reduce the expense of treatment process. Results obtained in this study indicated that a sequential Mg0 or Mg0/immobilized palladium-biological treatment approach may be useful for the disposal of post-expiry-dated endosulfan or remediation of pesticide contaminated sites. The integrated technology would be beneficial in terms of reducing the time as well as overall cost for the treatment endosulfan in comparison with individual chemical or biological treatment methods. In addition, this approach will eliminate the risk of accumulation of metabolites that may pose toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agnihotri P, Mahindrakar AB, Gautam SK (2011) Dechlorination of endosulfan and lindane using Mg0/Pd+4 bimetallic system. Water Environ Res 83(9):865–873

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2015) U.S. Department of Health and Human Services, Toxicological Profile for Endosulfan, Atlanta, Georgia, USA

  • Bajaj A, Pathak A, Mudiam MR (2010) Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading α-endosulfan and endosulfan sulfate. J Appl Microbiol 109(6):2135–2143

    Article  CAS  Google Scholar 

  • Barry MJ, Davies W (2004) Effects of invertebrate predators and a pesticide on temporary pond microcosms used for aquatic toxicity testing. Environ Pollut 131(1):25–34

    Article  CAS  Google Scholar 

  • Begum A, Gautam SK (2012) Endosulfan and lindane degradation using ozonation. Environ Technol 33(8):943–949

    Article  CAS  Google Scholar 

  • Begum A, Agnihotri P, Mahindrakar AB, Gautam SK (2017) Degradation of endosulfan and lindane using Fenton’s reagent. Appl Water Sci 7:207–215

    Article  CAS  Google Scholar 

  • Bratsch SG (1989) Standard electrode potentials and temperature coefficients in water at 298.15 K. J Phys Chem Ref Data 18(1):1–21

    Article  CAS  Google Scholar 

  • Calvin NN, Onyedika NC, Emmanuel GC, Nkiruka IB (2017) Biodegradation of endosulfan by mixed bacteria culture strains of Pseudomonas aeruginosa and Staphylococcus aureus. Sci World J 12(1):9–12

    Google Scholar 

  • Chang C, Lian F, Zhu L (2011) Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environ Pollut 159(10):2507–2514

    Article  CAS  Google Scholar 

  • Chaplin BP, Shapley JR, Werth CJ (2007) Regeneration of sulfur-fouled bimetallic Pd-based catalysts. Environ Sci Technol 41(15):5491–5497

    Article  CAS  Google Scholar 

  • Chaplin BP, Reinhard M, Schneider WF, Schuth C, Shapley JR, Strathmann TJ, Werth CJ (2012) Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ Sci Technol 46(7):3655–3670

    Article  CAS  Google Scholar 

  • Dsikowitzky L, Nordhaus I, Sujatha CH, Akhil PS, Soman K, Schwarzbauer J (2014) A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India. Sci Total Environ 485–486:348–362

    Article  CAS  Google Scholar 

  • Engelmann MD, Doyle JG, Cheng IF (2001) The complete dechlorination of DDT by magnesium/palladium bimetallic particles. Chemosphere 43(2):195–198

    Article  CAS  Google Scholar 

  • Harikumar PS, Jesitha K, Megha T, Kokkal K (2014) Persistence of endosulfan in selected areas of Kasaragod District, Kerala. Curr Sci 106(10):1421–1429

    CAS  Google Scholar 

  • He N, Li P, Zhou Y, Fan S, Ren W (2009) Degradation of pentachlorobiphenyl by a sequential treatment using Pd coated iron and an aerobic bacterium (H1). Chemosphere 76(11):1491–1497

    Article  CAS  Google Scholar 

  • Jesitha K, Nimisha KM, Manjusha CM, Harikumar PS (2015) Biodegradation of endosulfan by Pseudomonas fluorescens. Environ Process 2(1):225–240

    Article  CAS  Google Scholar 

  • Jin Z, Nackashi D, Lu W, Kittrell C, Tour JM (2010) Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem Mater 22(20):5695–5699

    Article  CAS  Google Scholar 

  • Keane MA (2011) Supported transition metal catalysts for hydrodechlorination reactions. ChemCatChem 3(5):800–821

    Article  CAS  Google Scholar 

  • Kim YM, Murugesan K, Chang YY, Kim EJ, Chang YS (2012) Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. J Chem Technol Biotechnol 87(2):216–224

    Article  CAS  Google Scholar 

  • Lu Y, Morimoto K, Takeshita T, Takeuchi T, Saito T (2000) Genotoxic effects of alpha-endosulfan and beta-endosulfan on human HepG2 cells. Environ Health Perspect 108(6):559–561

    CAS  Google Scholar 

  • Misra SS, Joshi S (2017). Tracking decades-long endosulfan tragedy in Kerala. Down to Earth. http://www.downtoearth.org.in/coverage/tracking-decades-long-endosulfan-tragedy-in-kerala-56788. Accessed 30 Jan 2018

  • Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2013) Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd-Fe/γ-Al2O3 catalyst. Water Res 47(9):3070–3080

    Article  CAS  Google Scholar 

  • Murugesan K, Bokare V, Jeon JR, Kim EJ, Kim JH, Chang YS (2011) Effect of Fe–Pd bimetallic nanoparticles on Sphingomonas sp. PH-07 and a nano-bio hybrid process for triclosan degradation. Biores Technol 102(10):6019–6025

    Article  CAS  Google Scholar 

  • Ordonez S, Vivas BP, Diez FV (2010) Minimization of the deactivation of palladium catalysts in the hydrodechlorination of trichloroethylene in wastewaters. Appl Catal B 95(3–4):288–296

    Article  CAS  Google Scholar 

  • Park Y, Ayoko GA, Kurdi R, Horvath E, Kristof J, Frost RL (2013) Adsorption of phenolic compounds by organoclays: implications for the removal of organic pollutants from aqueous media. J Colloid Interface Sci 406:196–208

    Article  CAS  Google Scholar 

  • Patocka J, Wu Q, Franca TCC, Ramalho TC, Pita R, Kuca K (2016) Clinical aspects of the poisoning by the pesticide endosulfan. Quim Nova 39(8):987–994

    Google Scholar 

  • Paul V, Balasubramaniam E (1997) Effect of single and repeated administration of endosulfan on behavior and its interaction with centrally acting drugs in experimental animals: a mini review. Environ Toxicol Pharmacol 3(2):151–157

    Article  CAS  Google Scholar 

  • Pereira VM, Bortolotto JW, Kist LW, Azevedo MB, Fritsch RS, Oliveira Rda L, Pereira TC, Bonan CD, Vianna MR, Bogo MR (2012) Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). Neurotoxicology 33(3):469–475

    Article  CAS  Google Scholar 

  • Peterson SM, Batley GE (1993) The fate of endosulfan in aquatic ecosystems. Environ Pollut 82(2):143–152

    Article  CAS  Google Scholar 

  • Pillai HPS, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 7(5):734–744

    Article  CAS  Google Scholar 

  • Pradeep V, Subbaiah UM (2016) Use of Ca-alginate immobilized Pseudomonas aeruginosa for repeated batch and continuous degradation of Endosulfan. 3 Biotech 6(2):124

    Article  Google Scholar 

  • Santhanalakshmi J, Komalavalli R, Venkatesan P (2012) Photo catalytic degradation of chloropyrifos, endosulphon, iimidocloprid and quinolphos by nano crystalline TiO2—a kinetic study with pH and mass effects. Nanosci Nanotechnol 2(1):8–12

    Article  CAS  Google Scholar 

  • Saxe JP, Lubenow BL, Chiu PC, Huang CP, Cha DK (2006) Enhanced biodegradation of azo dyes using an integrated elemental iron-activated sludge system: II. Effects of physical-chemical parameters. Water Environ Res 78(1):26–30

    Article  CAS  Google Scholar 

  • Schuth C, Kummer NA, Weidenthaler C, Schad H (2004) Field application of a tailored catalyst for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. Appl Catal B 52(3):197–203

    Article  CAS  Google Scholar 

  • Singh SP, Bose P (2017) Reductive dechlorination of endosulfan isomers and its metabolites by zero-valent metals: reaction mechanism and degradation products. RSC Adv 7(44):27668–27677

    Article  CAS  Google Scholar 

  • Sivagami K, Vikraman B, Krishna RR, Swaminathan T (2016) Chlorpyrifos and endosulfan degradation studies in an annular slurry photo reactor. Ecotoxicol Environ Saf 134(Part 2):327–331

    Article  CAS  Google Scholar 

  • Stylianou SK, Szymanska K, Katsoyiannis IA, Zouboulis AI (2015) Novel water treatment processes based on hybrid membrane-ozonation systems: a novel ceramic membrane contactor for bubbleless ozonation of emerging micropollutants. J Chem. https://doi.org/10.1155/2015/214927

    Article  Google Scholar 

  • Sunderam RIM, Thompson GB, Cheng DMH (1992) Toxicity of endosulfan to native and introduced fish in Australia. Environ Toxicol Chem 11(10):1469–1476

    Article  CAS  Google Scholar 

  • Tang S, Wang XM, Yang HW, Xie XF (2013) Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation. Chemosphere 90(4):1563–1567

    Article  CAS  Google Scholar 

  • Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017

    Article  CAS  Google Scholar 

  • Thangadurai P, Suresh S (2011) Dechlorination of endosulfan using metal mediated systems. In: Proceedings of the 12th international conference on environmental science and technology, Rhodes, Greece, pp B1034–B1041

  • Thangadurai P, Suresh S (2013) Reductive transformation of endosulfan in aqueous phase using magnesium–palladium bimetallic systems: a comparative study. J Hazard Mater 246–247:245–256

    Article  CAS  Google Scholar 

  • Thangadurai P, Suresh S (2014) Biodegradation of endosulfan by soil bacterial cultures. Int Biodeterior Biodegradation 94:38–47

    Article  CAS  Google Scholar 

  • The Hindu (2011) Supreme Court bans endosulfan across the country for 8 weeks. http://www.thehindu.com/news/national/supreme-court-bans-endosulfan-across-the-country-for-8-weeks/article2015706.ece. Accessed 30 Jan 2018

  • Vijaiyan SG, Rajam A (2013) Degradation of endosulfan using Pseudomonas sp. ED1 isolated from pesticide contaminated soil. J Acad Ind Res 2(3):170–175

    Google Scholar 

  • Wang JL, Xu LJ (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol 42(3):251–325

    Article  CAS  Google Scholar 

  • Wang ZL, Yan JM, Wang HL, Ping Y, Jiang Q (2012) Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate. Sci Rep 2: https://doi.org/10.1038/srep00598

    Article  Google Scholar 

  • Yedla S, Dikshit AK (2008) Removal of endosulfan from water using wood—adsorption and desorption. J Environ Eng ASCE 134(2):102–110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge IIT Bombay for providing infrastructure and financial support to execute this project. The authors also thank Mr. Sengottaiyan Murugan for his assistance with GC–MS facility at the Department of Chemistry, IIT Bombay, Mumbai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Additional information

Editorial responsibiility: Binbin Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1674 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S., Thangadurai, P. Coupling of zero-valent magnesium or magnesium–palladium-mediated reductive transformation to bacterial oxidation for elimination of endosulfan. Int. J. Environ. Sci. Technol. 16, 1421–1432 (2019). https://doi.org/10.1007/s13762-018-1748-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1748-1

Keywords

Navigation