Application of TiO2-supported Au for ozone molecule removal from environment: a van der Waals-corrected DFT study

Abstract

In this paper, we examined the interaction of ozone molecule with TiO2-supported Au nanoparticles by performing first-principles calculations within density functional theory. The structural properties including bond lengths, bond angles and adsorption energies were calculated. The electronic properties were analyzed in view of the Mulliken charges and projected density of states. The results show that the adsorption of O3 molecule on the N-doped TiO2-supported Au nanoparticle is more energetically favorable than the adsorption on the pristine one, suggesting that the N-doped TiO2-supported Au nanoparticle can react with O3 molecule more strongly. It was found that the O3 molecule tends to be strongly adsorbed on the surface of Au nanoparticles through its side oxygen atoms, providing a bridge geometry. On the TiO2 side of TiO2-supported Au overlayer, there is also a strong binding between the fivefold coordinated titanium atoms and the side oxygen atoms of O3 molecule, where the titanium atoms represent a double contacting point with oxygen atoms. Therefore, the obtained results also propose a theoretical basis for the potential applications of TiO2-supported Au nanoparticles in gas sensor devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abbasi A, Sardroodi JJ (2016a) N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations. J Environ Sci Nano 3:1153–1164

    Article  CAS  Google Scholar 

  2. Abbasi A, Sardroodi JJ (2016b) Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations. J Comput Theor Chem 600:2457–2469

    Google Scholar 

  3. Abbasi A, Sardroodi JJ (2016c) A first-principles study of the interaction of aspirin with nitrogen-doped TiO2 anatase nanoparticles. Nanomed Res J 1(2):69–78

    Google Scholar 

  4. Abbasi A, Sardroodi JJ (2016d) A theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: applications to gas sensor devices. Int J Nano Dimens 7:349–359

    CAS  Google Scholar 

  5. Abbasi A, Sardroodi JJ (2017a) Van der Waals corrected DFT study on the adsorption behaviors of TiO2 anatase nanoparticles as potential molecule sensor for thiophene detection. J Water Environ Nanotechnol 2:52–65

    CAS  Google Scholar 

  6. Abbasi A, Sardroodi JJ (2017b) A theoretical investigation of the interaction of Immucillin-A with N-doped TiO2 anatase nanoparticles: applications to nanobiosensors and nanocarriers. Nanomed Res J 1(3):128–138

    Google Scholar 

  7. Abbasi A, Sardroodi JJ, Ebrahimzadeh AR (2016) TiO2/gold nanocomposite as an extremely sensitive molecule sensor for NO2 detection: a DFT study. J Water Environ Nanotechnol 1:55–62

    Google Scholar 

  8. Batzilla M, Morales EH, Diebold U (2007) Surface studies of nitrogen implanted TiO2. J Chem Phys 339:36–43

    Google Scholar 

  9. Buonsanti R, Grillo V, Carlino E, Giannini C, Kipp T, Cingolani R, Cozzoli PD (2008) Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J Am Chem Soc 130:11223–11233

    Article  CAS  Google Scholar 

  10. Cassaignon S, Koelsch M, Jolivet JP (2007) Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid. J Mater Sci 42:6689–6695

    Article  CAS  Google Scholar 

  11. Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306(5694):252–255

    Article  CAS  Google Scholar 

  12. Chen MS, Goodman DW (2006) Structure—activity relationships in supported Au catalysts. Catal Today 111:22–33

    Article  CAS  Google Scholar 

  13. Chrétien S, Metiu H (2007) O2 evolution on a clean partially reduced rutile TiO2 (110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. J Chem Phys 127:084704

    Article  CAS  Google Scholar 

  14. Cosandey F, Madey TE (2001) Growth, morphology, interfacial effects and catalytic properties of au on TiO2. Surf Rev Lett 8:73

    Article  CAS  Google Scholar 

  15. Di Paola A, Addamo M, Bellardita M, Cazzanelli E, Palmisano L (2007) Preparation of photocatalytic brookite thin films. Thin Solid Films 515(7):3527–3529

    Article  CAS  Google Scholar 

  16. Djaoued Y, Bruning R, Bersani D, Lottici PP, Badilescu S (2004) Sol–gel nanocrystalline brookite-rich titania films. Mater Lett 58(21):2618–2622

    Article  CAS  Google Scholar 

  17. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  18. Fujishima A, Zhang X, Tryk DA (1992) TiO2 photocatalysis and related surface phenomena. J Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  19. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis: fundamentals and applications. BKC, Tokyo

    Google Scholar 

  20. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  21. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  CAS  Google Scholar 

  22. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  23. Habibpour R, Kashi E, Vaziri R (2017) Computational study of electronic, spectroscopic and chemical properties of Cun(n=2-8) nanoclusters for CO adsorption. Int J Nano Dimens 8(2):114–123

    CAS  Google Scholar 

  24. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0° C. J Chem Lett 16(2):405

    Article  Google Scholar 

  25. Hayashi TM, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566–575

    Article  CAS  Google Scholar 

  26. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. J Phys Rev 136:B864

    Article  Google Scholar 

  27. http://rruff.geo.arizona.edu/AMS/amcsd.php

  28. Iskandar F, Nandiyanto ABD, Yun KM, Hogan CJ, Okuyama K, Biswas P (2007) Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templatings. Adv Mater 19:1408–1412

    Article  CAS  Google Scholar 

  29. Isley SL, Penn RL (2006) Relative brookite and anatase content in sol–gel synthesized titanium dioxide nanoparticles. J Phys Chem B 110:15134

    Article  CAS  Google Scholar 

  30. Katrib Y, Martin ST, Hung HM, Rudich Y, Zhang H, Slowik JG (2004) Products and mechanisms of ozone reactions with oleic acid for aerosol particles having core-shell morphologies. J Phys Chem A 108(32):6686–6695

    Article  CAS  Google Scholar 

  31. Kobayashi M, Petrykin VV, Kakihana M (2007) One-step synthesis of TiO2 (B) nanoparticles from a water-soluble titanium complex. Chem Mater 19:5373–5376

    Article  CAS  Google Scholar 

  32. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. J Phys Rev 140:A1133

    Article  Google Scholar 

  33. Koklj A (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. J Comput Mater Sci 28:155–168

    Article  CAS  Google Scholar 

  34. Kung HH, Kung MC, Costello CK (2003) Supported Au catalysts for low temperature CO oxidation. J Catal 216:425–432

    Article  CAS  Google Scholar 

  35. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using gold catalysts. Chem Commun 18:2058

    Article  CAS  Google Scholar 

  36. Li JG, Ishigaki T, Sun XD (2007) Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J Phys Chem C 111:4969–4976

    Article  CAS  Google Scholar 

  37. Lin C, Wen G, Liang A, Jiang Z (2013) A new resonance Rayleigh scattering method for the determination of trace O3 in air using rhodamine 6G as probe. J RSC Adv 3:6627–6630

    Article  CAS  Google Scholar 

  38. Liu J, Liu Q, Fang P, Pan C, Xiao W (2012) First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles. J Appl Surf Sci 258:8312–8318

    Article  CAS  Google Scholar 

  39. Molina LM, Hammer B (2005) Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl Catal A Gen 291:21–31

    Article  CAS  Google Scholar 

  40. Molina LM, Rasmussen MD, Hammer B (2004) Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2 (110). J Chem Phys 120(16):7673

    Article  CAS  Google Scholar 

  41. Norskov JK (2002) Catalytic CO oxidation by a gold nanoparticle: a density functional study. J Am Chem Soc 124:11262–11263

    Article  CAS  Google Scholar 

  42. Okumura M, Tsubota S, Haruta M (2003) Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J Mol Catal A Chem 199:73–84

    Article  CAS  Google Scholar 

  43. Otoufi MK, Shahtahmasebebi N, Kompany A, Goharshadi E (2014) Systematic growth of Gold nanoseeds on silica for silica@gold core-shell nanoparticles and investigation of optical properties. Int J Nano Dimens 5:525–531

    Google Scholar 

  44. Ozaki T (2003) Variationally optimized atomic orbitals for large-scale electronic structures. J Phys Rev B 67:155108

    Article  CAS  Google Scholar 

  45. Ozaki T, Kino H (2004) Numerical atomic basis orbitals from H to Kr. J Phys Rev B 69:195113

    Article  CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1981) Generalized gradient approximation made simple. J Phys Rev Letts 78:1396

    Article  Google Scholar 

  47. Reddy MA, Kishore MS, Pralong V, Caignaert V, Varadaraju UV (2006) Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2. Electrochem Commun 8(8):1299–1303

    Article  CAS  Google Scholar 

  48. Rodriguez JA, Liu G, Jirsak T, Hrbek J, Chang ZP, Dvorak J, Maiti A (2002) Activation of gold on titania:  adsorption and reaction of SO2 on Au/TiO2 (110). J Am Chem Soc 124:5242

    Article  CAS  Google Scholar 

  49. Rumaiz AK, Woicik JC, Cockayne E, Lin HY, Jaffari GH, Shah SI (2009) Oxygen vacancies in N doped anatase TiO2: experiment and first-principles calculations. J Appl Phys Letts 95:262111

    Article  CAS  Google Scholar 

  50. Salama T, Ohnishi R, Shido T, Ichikawa M (1996) Highly selective catalytic reduction of NO by H2 over Au 0 and Au (I) impregnated in NaY zeolite catalysts. J Catal 162(2):169–178

    Article  CAS  Google Scholar 

  51. Shibata Y, Irie H, Ohmori M, Nakajima A, Watanabe T, Hashimoto K (2007) Comparison of photochemical properties of brookite and anatase TiO2 films. Phys Chem Chem Phys 6:1359–1362

    Article  CAS  Google Scholar 

  52. The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site http://www.openmxsquare.org

  53. Vittadini A, Selloni A (2002) Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: a density functional study. J Chem Phys 117:353–361

    Article  CAS  Google Scholar 

  54. Wu C, Chen M, Skelton AA, Cummings PT, Zheng T (2013) Adsorption of arginine–glycine–aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation. ACS Appl Mater Interfaces 5:2567–2579

    Article  CAS  Google Scholar 

  55. Wyckoff RWG (1972) Crystal structures, 2nd edn. Interscience Publishers, New York

    Google Scholar 

  56. Zuas O, Budiman H, Hamim N (2013) Anatase TiO2 and mixed M-anatase TiO2 (M = CeO2 or ZrO2) nano powder: synthesis and characterization. Int J Nano Dimens 4(1):7–12

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Azarbaijan Shahid Madani University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Abbasi.

Additional information

Editorial responsibiility: M. Abbaspour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2277 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Sardroodi, J.J. Application of TiO2-supported Au for ozone molecule removal from environment: a van der Waals-corrected DFT study. Int. J. Environ. Sci. Technol. 16, 3483–3496 (2019). https://doi.org/10.1007/s13762-018-1733-8

Download citation

Keywords

  • Density functional theory
  • TiO2
  • O3
  • TiO2-supported Au nanoparticles
  • Adsorption