Anaerobic digestion process: technological aspects and recent developments

Abstract

The technology of anaerobic digestion allows the use of biodegradable waste for energy production by breaking down organic matter through a series of biochemical reactions. Such process generates biogas (productivity of 0.45 Nm3/KgSV), which can be used as energy source in industrial activities or as fuel for automotive vehicles. Anaerobic digestion is an economically viable and environmentally friendly process since it makes possible obtaining clean energy at a low cost and without generating greenhouse gases. Searching for clean energy sources has been the target of scientists worldwide, and this technology has excelled on the basis of efficiency in organic matter conversion into biogas (yield in the range of 0.7–2.0 kWh/m3), considered energy carriers for the future. This paper gives an overview of the technology of anaerobic digestion of food waste, describing the metabolism and microorganisms involved in this process, as well as the operational factors that affect it such as temperature, pH, organic loading, moisture, C/N ratio, and co-digestion. The types of reactors that can be used, the methane production, and the most recent developments in this area are also presented and discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abouelenien F, Namba Y, Nishio N, Nakashimada Y (2016) Dry co-digestion of poultry manure with agriculture wastes. Appl Biochem Biotechnol 178:932–946. https://doi.org/10.1007/s12010-015-1919-1

    Article  CAS  Google Scholar 

  2. Aichinger P et al (2015) Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction. Water Res 87:416–423. https://doi.org/10.1016/j.watres.2015.07.033

    Article  CAS  Google Scholar 

  3. Alvarino T, Suárez S, Garrido M, Lema JM, Omil F (2016) A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants. Chemosphere 144:452–458. https://doi.org/10.1016/j.chemosphere.2015.09.016

    Article  CAS  Google Scholar 

  4. Angeriz-Campoy R, Fdez-Güelfo LA, Álvarez-Gallego CJ, Romero-García LI (2017) Inhibition of the hydrolytic phase in the production of biohydrogen by dark fermentation of organic solid waste. Energy Fuels 31:7176–7184. https://doi.org/10.1021/acs.energyfuels.7b00847

    Article  CAS  Google Scholar 

  5. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781. https://doi.org/10.1016/j.pecs.2008.06.002

    Article  CAS  Google Scholar 

  6. Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen S-U (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenerg 75:101–118. https://doi.org/10.1016/j.biombioe.2015.02.011

    Article  CAS  Google Scholar 

  7. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156. https://doi.org/10.1016/j.apenergy.2014.02.035

    Article  CAS  Google Scholar 

  8. Ariunbaatar J, Panico A, Yeh DH, Pirozzi F, Lens PNL, Esposito G (2015) Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: substrate versus digestate heating. Waste Manag 46:176–181. https://doi.org/10.1016/j.wasman.2015.07.045

    Article  CAS  Google Scholar 

  9. Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N (2017) A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valoriz 8:267–283. https://doi.org/10.1007/s12649-016-9826-4

    Article  CAS  Google Scholar 

  10. Azman S, Khadem AF, van Lier JB, Zeeman G, Plugge CM (2015) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Environ Sci Technol 45:2523–2564. https://doi.org/10.1080/10643389.2015.1053727

    Article  CAS  Google Scholar 

  11. Berni M et al (2014) Anaerobic digestion and biogas production: combine effluent treatment with energy generation in UASB reactor as biorefinery annex. Int J Chem Eng 2014:8. https://doi.org/10.1155/2014/543529

    Article  CAS  Google Scholar 

  12. BioCycle (2014) BioCycle California’s new laws to accelerate organics recycling BioCycle

  13. Bollon J, Le-hyaric R, Benbelkacem H, Buffiere P (2011) Development of a kinetic model for anaerobic dry digestion processes: focus on acetate degradation and moisture content. Biochem Eng J 56:212–218. https://doi.org/10.1016/j.bej.2011.06.011

    Article  CAS  Google Scholar 

  14. Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40:989–995. https://doi.org/10.1016/j.procbio.2004.03.007

    Article  CAS  Google Scholar 

  15. Braber K (1995) Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass Bioenerg 9:365–376. https://doi.org/10.1016/0961-9534(95)00103-4

    Article  CAS  Google Scholar 

  16. Briški F, Vuković M, Papa K, Gomzi Z, Domanovac T (2007) Modelling of composting of food waste in a column reactor. Chem Pap 61:24–29. https://doi.org/10.2478/s11696-006-0090-0

    CAS  Article  Google Scholar 

  17. Cesaro A, Naddeo V, Amodio V, Belgiorno V (2012) Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrason Sonochem 19:596–600. https://doi.org/10.1016/j.ultsonch.2011.09.002

    Article  CAS  Google Scholar 

  18. Cheng H, Wang L (2013) Lignocelluloses feedstock biorefinery as petrorefinery substitutes. The Author 30

  19. Chernicharo CADL (1997) Princípios do tratamento biológico de águas residuárias. Reatores anaeróbios 5:379

    Google Scholar 

  20. Dadaser-Celik F, Azgin ST, Yildiz YS (2016) Optimization of solid content, carbon/nitrogen ratio and food/inoculum ratio for biogas production from food waste. Waste Manag Res 34:1241–1248. https://doi.org/10.1177/0734242x16659922

    Article  CAS  Google Scholar 

  21. Daija L, Selberg A, Rikmann E, Zekker I, Tenno T, Tenno T (2016) The influence of lower temperature, influent fluctuations and long retention time on the performance of an upflow mode laboratory-scale septic tank. Desalin Water Treat 57:18679–18687. https://doi.org/10.1080/19443994.2015.1094421

    Article  CAS  Google Scholar 

  22. Dennehy C, Lawlor PG, Gardiner GE, Jiang Y, Cormican P, McCabe MS, Zhan X (2017) Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs. Front Environ Sci Eng 11:4. https://doi.org/10.1007/s11783-017-0923-9

    Article  CAS  Google Scholar 

  23. Dong X, Shao L, Wang Y, Kou W, Cao Y, Zhang D (2015) Biogas by two-stage microbial anaerobic and semi-continuous digestion of Chinese cabbage waste. Chin J Chem Eng 23:847–852. https://doi.org/10.1016/j.cjche.2015.03.001

    Article  CAS  Google Scholar 

  24. EEA (2014) Commercial Food Waste Disposal Ban EEA, Massachusetts. http://www.mass.gov/eea/agencies/massdep/recycle/reduce/food-waste-ban.html

  25. EPA (2013) Environmental Protection Agency, National waste report 2011 Johnstown Castle, Wexford

  26. EPE (2014) (Energy Research Company) Series Energy Resources, TECHNICAL NOTE DEA 18/14. Energy inventory of Municipal Solid Waste. Rio de Janeiro, p12

  27. European-Commission (2006) European Commission, Integrated Pollution and Prevention Control, Reference Document of Best Available Techniques for the Waste Treatment Industries

  28. Europea-Parliament (2008) European Parliament. Council directive on waste and repealing certain directives. 2008/98/EC. Off J, L 312 (2008), pp 3–30

  29. FEAM (2012) Fundação Estadual do Meio Ambiente, Aproveitamento energético de resíduos sólidos urbanos: guia de orientação para governos municipais de Minas Gerais, Fundação Estadual do Meio Ambiente. Belo Horizonte—MG. FEAM 2012:163

    Google Scholar 

  30. Ferrer I, Ponsá S, Vázquez F, Font X (2008) Increasing biogas production by thermal (70 C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem Eng J 42:186–192. https://doi.org/10.1016/j.bej.2008.06.020

    Article  CAS  Google Scholar 

  31. Foresti E, Zaiat M, Vallero M (2006) Anaerobic processes as the core technology for sustainable domestic wastewater treatment: consolidated applications, new trends, perspectives, and challenges. Rev Environ Sci Bio Technol 5:3–19. https://doi.org/10.1007/s11157-005-4630-9

    Article  CAS  Google Scholar 

  32. Forster-Carneiro T, Pérez M, Romero LI (2008) Anaerobic digestion of municipal solid wastes: dry thermophilic performance. Biores Technol 99:8180–8184. https://doi.org/10.1016/j.biortech.2008.03.021

    Article  CAS  Google Scholar 

  33. Forster-Carneiro T, Berni MD, Dorileo IL, Rostagno MA (2013) Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resour Conserv Recycl 77:78–88. https://doi.org/10.1016/j.resconrec.2013.05.007

    Article  Google Scholar 

  34. Garcia-Peña EI, Parameswaran P, Kang DW, Canul-Chan M, Krajmalnik-Brown R (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Biores Technol 102:9447–9455. https://doi.org/10.1016/j.biortech.2011.07.068

    Article  CAS  Google Scholar 

  35. Gaur RZ, Suthar S (2017) Anaerobic digestion of activated sludge, anaerobic granular sludge and cow dung with food waste for enhanced methane production. J Clean Prod 164:557–566. https://doi.org/10.1016/j.jclepro.2017.06.201

    Article  CAS  Google Scholar 

  36. Girotto F, Alibardi L, Cossu R (2015) Food waste generation and industrial uses: a review. Waste Manag 45:32–41. https://doi.org/10.1016/j.wasman.2015.06.008

    Article  CAS  Google Scholar 

  37. Gkamarazi N (2015) Implementing anaerobic digestion for municipal solid waste treatment: challenges and prospects. Paper presented at the International Conference on Environmental Science and Technology, CEST, Rhodes, Greece, 3–5 September 2015, p 6

  38. Hegde G, Pullammanappallil P (2007) Comparison of thermophilic and mesophilic one-stage, batch, high-solids anaerobic digestion. Environ Technol 28:361–369. https://doi.org/10.1080/09593332808618797

    Article  CAS  Google Scholar 

  39. Ho D, Jensen P, Batstone D (2014) Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion. Environ Sci Technol 48:6468–6476. https://doi.org/10.1021/es500074j

    Article  CAS  Google Scholar 

  40. Hwang S, Lee Y, Yang K (2001) Maximization of acetic acid production in partial acidogenesis of swine wastewater. Biotechnol Bioeng 75:521–529

    Article  CAS  Google Scholar 

  41. Jabeen M, Yousaf S, Haider MR, Malik RN (2015) High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates. Int Biodeterior Biodegrad 102:149–153. https://doi.org/10.1016/j.ibiod.2015.03.023

    Article  CAS  Google Scholar 

  42. Jang HM, Kim M-S, Ha JH, Park JM (2015) Reactor performance and methanogenic archaea species in thermophilic anaerobic co-digestion of waste activated sludge mixed with food wastewater. Chem Eng J 276:20–28. https://doi.org/10.1016/j.cej.2015.04.072

    Article  CAS  Google Scholar 

  43. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744. https://doi.org/10.1016/j.wasman.2011.03.021

    Article  CAS  Google Scholar 

  44. Khanal SK (2009) Bioenergy generation from residues of biofuel industries. In: Anaerobic biotechnology for bioenergy production. Wiley, pp 161–188. https://doi.org/10.1002/9780813804545.ch8

  45. Kobayashi T, Xu K-Q, Li Y-Y, Inamori Y (2012) Effect of sludge recirculation on characteristics of hydrogen production in a two-stage hydrogen–methane fermentation process treating food wastes. Int J Hydrog Energy 37:5602–5611. https://doi.org/10.1016/j.ijhydene.2011.12.123

    Article  CAS  Google Scholar 

  46. Kothari R, Pandey AK, Kumar S, Tyagi VV, Tyagi SK (2014) Different aspects of dry anaerobic digestion for bio-energy: an overview. Renew Sustain Energy Rev 39:174–195. https://doi.org/10.1016/j.rser.2014.07.011

    Article  CAS  Google Scholar 

  47. Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sustain Energy Rev 34:491–500. https://doi.org/10.1016/j.rser.2014.03.041

    Article  CAS  Google Scholar 

  48. Kythreotou N, Florides G, Tassou SA (2014) A review of simple to scientific models for anaerobic digestion. Renew Energy 71:701–714. https://doi.org/10.1016/j.renene.2014.05.055

    Article  CAS  Google Scholar 

  49. Lima RLS, Severino LS, Sofiatti V, Gheyi HR, Arriel NHC (2011) Atributos químicos de substrato de composto de lixo orgânico. Revista Brasileira de Engenharia Agrícola e Ambiental 15:185–192

    Article  Google Scholar 

  50. Lin CSK et al (2014) Current and future trends in food waste valorization for the production of chemicals, materials and fuels: a global perspective Biofuels. Bioprod Biorefining 8:686–715. https://doi.org/10.1002/bbb.1506

    Article  CAS  Google Scholar 

  51. Lucke SA (2012) Municipal solid waste as a renewable source for generation of electric energy: economical, social and environmental aspects. University of Campinas

  52. Mamede MCDS (2013) Environment and economic assessment of energy recovery from solid waste in Brazil University of Campinas

  53. Mamimin C, Singkhala A, Kongjan P, Suraraksa B, Prasertsan P, Imai T, Sompong O (2015) Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. Int J Hydrog Energy 40:6319–6328. https://doi.org/10.1016/j.ijhydene.2015.03.068

    Article  CAS  Google Scholar 

  54. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555. https://doi.org/10.1016/j.rser.2015.02.032

    Article  CAS  Google Scholar 

  55. Merlin Christy P, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev 34:167–173. https://doi.org/10.1016/j.rser.2014.03.010

    Article  CAS  Google Scholar 

  56. Mes T, Stams A, Reith J, Zeeman G (2003) Methane production by anaerobic digestion of wastewater and solid wastes. Bio-methane and Bio-hydrogen 58–102

  57. Monson K, Esteves S, Guwy A, Dinsdale R (2007) Anaerobic digestion of biodegradable municipal wastes: a review. University of Glamorgan. ISBN: 978-971

  58. Montañés R, Pérez M, Solera R (2014) Anaerobic mesophilic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: effect of pH control. Chem Eng J 255:492–499. https://doi.org/10.1016/j.cej.2014.06.074

    Article  CAS  Google Scholar 

  59. Nguyen DD et al (2017) Dry semi-continuous anaerobic digestion of food waste in the mesophilic and thermophilic modes: new aspects of sustainable management and energy recovery in South Korea. Energy Convers Manag 135:445–452. https://doi.org/10.1016/j.enconman.2016.12.030

    Article  CAS  Google Scholar 

  60. Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472. https://doi.org/10.1016/j.fuproc.2005.11.003

    Article  CAS  Google Scholar 

  61. Petruccioli M, Raviv M, Di Silvestro R, Dinelli G (2011) 6.42-agriculture and agro-industrial wastes, byproducts, and wastewaters: origin, characteristics, and potential in bio-based-compounds production Compr Biotechnol Second Ed Academic Press, Burlington, pp 531–545

  62. Poggi-Varaldo HM et al (2014) Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Waste Manag Res 32:353–365. https://doi.org/10.1177/0734242X14529178

    Article  CAS  Google Scholar 

  63. Raudkivi M, Zekker I, Rikmann E, Vabamäe P, Kroon K, Tenno T (2017) Nitrite inhibition and limitation–the effect of nitrite spiking on anammox biofilm, suspended and granular biomass. Water Sci Technol 75:313–321

    Article  CAS  Google Scholar 

  64. Ri P-C, Ren N-Q, Ding J, Kim J-S, Guo W-Q (2017) CFD optimization of horizontal continuous stirred-tank (HCSTR) reactor for bio-hydrogen production. Int J Hydrog Energy 42:9630–9640. https://doi.org/10.1016/j.ijhydene.2017.02.035

    Article  CAS  Google Scholar 

  65. Rikmann E, Zekker I, Tomingas M, Vabamäe P, Kroon K, Saluste A, Tenno T, Menert A, Loorits L, Rubin SS, Tenno T (2014) Comparison of sulfate-reducing and conventional Anammox upflow anaerobic sludge blanket reactors. J Biosci Bioeng 118(4): 426–433

    Article  CAS  Google Scholar 

  66. Rikmann E, Zekker I, Tenno T, Saluste A, Tenno T (2017) Inoculum-free start-up of biofilm- and sludge-based deammonification systems in pilot scale. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-017-1374-3

    Article  Google Scholar 

  67. Rizvi H et al (2015) Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arab J Chem 8:780–786. https://doi.org/10.1016/j.arabjc.2013.12.016

    Article  CAS  Google Scholar 

  68. Santos SC, Ferreira Rosa PR, Sakamoto IK, Amâncio Varesche MB, Silva EL (2014) Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugar cane stillage. Int J Hydrog Energy 39:9000–9011. https://doi.org/10.1016/j.ijhydene.2014.03.241

    Article  CAS  Google Scholar 

  69. Shi X-S, Dong J-J, Yu J-H, Yin H, Hu S-M, Huang S-X, Yuan X-Z (2017) Effect of hydraulic retention time on anaerobic digestion of wheat straw in the semicontinuous continuous stirred-tank reactors. Biomed Res Int 2017:6. https://doi.org/10.1155/2017/2457805

    CAS  Article  Google Scholar 

  70. Show KY, Lee DJ, Chang JS (2011) Bioreactor and process design for biohydrogen production. Bioresour Technol 102:8524–8533. https://doi.org/10.1016/j.biortech.2011.04.055

    Article  CAS  Google Scholar 

  71. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416. https://doi.org/10.1016/j.biotechadv.2009.03.001

    Article  CAS  Google Scholar 

  72. Stavropoulos KP, Kopsahelis A, Zafiri C, Kornaros M (2016) Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste Biomass Valoriz 7:753–764. https://doi.org/10.1007/s12649-016-9548-7

    Article  CAS  Google Scholar 

  73. Tambone F, Scaglia B, D’Imporzano G, Schievano A, Orzi V, Salati S, Adani F (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81:577–583. https://doi.org/10.1016/j.chemosphere.2010.08.034

    Article  CAS  Google Scholar 

  74. Tenno T, Rikmann E, Zekker I, Tenno T, Daija L, Mashirin A (2016) Modelling equilibrium distribution of carbonaceous ions and molecules in a heterogeneous system of CaCO^ sub 3^-water-gas. Proc Est Acad Sci 65:68

    Article  Google Scholar 

  75. Trzcinski AP (2009) Anaerobic membrane bioreactor technology for solid waste stabilization. Imperial College, London

    Google Scholar 

  76. Uggetti E, Sialve B, Trably E, Steyer J-P (2014) Integrating microalgae production with anaerobic digestion: a biorefinery approach Biofuels. Bioprod Biorefining 8:516–529. https://doi.org/10.1002/bbb.1469

    Article  CAS  Google Scholar 

  77. Vavilin VA, Rytov SV, Lokshina LY, Pavlostathis SG, Barlaz MA (2003) Distributed model of solid waste anaerobic digestion: effects of leachate recirculation and pH adjustment. Biotechnol Bioeng 81:66–73. https://doi.org/10.1002/bit.10450

    Article  CAS  Google Scholar 

  78. Wang X, Zhao Y-C (2009) A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrog Energy 34:245–254. https://doi.org/10.1016/j.ijhydene.2008.09.100

    Article  CAS  Google Scholar 

  79. Wang H, Zhang Y, Angelidaki I (2016) Ammonia inhibition on hydrogen enriched anaerobic digestion of manure under mesophilic and thermophilic conditions. Water Res 105:314–319. https://doi.org/10.1016/j.watres.2016.09.006

    Article  CAS  Google Scholar 

  80. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Biores Technol 99:7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044

    Article  CAS  Google Scholar 

  81. Wukovits W, Schnitzhofer W (2009) FUELS–HYDROGEN PRODUCTION|Biomass: fermentation A2-Garche, Jürgen. In: Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 268–275. http://doi.org/10.1016/B978-044452745-5.00312-9

  82. Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag 33:2653–2658. https://doi.org/10.1016/j.wasman.2013.05.014

    Article  CAS  Google Scholar 

  83. Yeshanew MM, Frunzo L, Luongo V, Pirozzi F, Lens PNL, Esposito G (2016a) Start-up of an anaerobic fluidized bed reactor treating synthetic carbohydrate rich wastewater Journal of Environmental Management 184. Part 2:456–464. https://doi.org/10.1016/j.jenvman.2016.10.001

    CAS  Article  Google Scholar 

  84. Yeshanew MM, Frunzo L, Pirozzi F, Lens PNL, Esposito G (2016b) Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Biores Technol 220:312–322. https://doi.org/10.1016/j.biortech.2016.08.078

    Article  CAS  Google Scholar 

  85. Yi J, Dong B, Jin J, Dai X (2014) Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS ONE 9:e102548. https://doi.org/10.1371/journal.pone.0102548

    Article  CAS  Google Scholar 

  86. Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 78:527–530. https://doi.org/10.1016/j.renene.2015.01.033

    Article  CAS  Google Scholar 

  87. Yu D, Kurola JM, Lähde K, Kymäläinen M, Sinkkonen A, Romantschuk M (2014) Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. J Environ Manag 143:54–60. https://doi.org/10.1016/j.jenvman.2014.04.025

    Article  CAS  Google Scholar 

  88. Yu H, Wang Z, Wu Z, Zhu C (2016) Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community. Sci Rep 6:20111

    Article  CAS  Google Scholar 

  89. Zekker I et al (2012) Effect of concentration on anammox nitrogen removal rate in a moving bed biofilm reactor. Environ Technol 33:2263–2271. https://doi.org/10.1080/09593330.2012.665487

    Article  CAS  Google Scholar 

  90. Zekker I et al (2013) Deammonification process start-up after enrichment of anammox microorganisms from reject water in a moving-bed biofilm reactor. Environ Technol 34:3095–3101. https://doi.org/10.1080/09593330.2013.803134

    Article  CAS  Google Scholar 

  91. Zekker I et al (2016) Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9°C in short-term anammox biofilm tests. Environ Technol 37:1933–1946. https://doi.org/10.1080/09593330.2015.1135995

    Article  CAS  Google Scholar 

  92. Zekker I, Rikmann E, Kroon K, Mandel A, Mihkelson J, Tenno T, Tenno T (2017) Ameliorating nitrite inhibition in a low-temperature nitritation–anammox MBBR using bacterial intermediate nitric oxide. Int J Environ Sci Technol 14:2343–2356. https://doi.org/10.1007/s13762-017-1321-3

    Article  CAS  Google Scholar 

  93. Zhai N, Zhang T, Yin D, Yang G, Wang X, Ren G, Feng Y (2015) Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Manag 38:126–131. https://doi.org/10.1016/j.wasman.2014.12.027

    Article  CAS  Google Scholar 

  94. Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982. https://doi.org/10.1016/j.enconman.2009.11.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the São Paulo Research Foundation—FAPESP (2011/19817-1; 2018/05999-0), CNPq (130741/2014-0), and the Novo Nordisk Foundation (Denmark, NNF Grant number: NNF10CC1016517). The authors also thank the Writing Center—General Administration of the University—UNICAMP—for the language services provided (for co-authored studies).

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Forster-Carneiro.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Náthia-Neves, G., Berni, M., Dragone, G. et al. Anaerobic digestion process: technological aspects and recent developments. Int. J. Environ. Sci. Technol. 15, 2033–2046 (2018). https://doi.org/10.1007/s13762-018-1682-2

Download citation

Keywords

  • Biogas
  • Energy
  • Organic residues
  • Methane
  • Hydrogen