Advertisement

Removal of heavy metals from wastewater using infiltration-percolation process and adsorption on activated carbon

  • M. Bali
  • H. Tlili
Original Paper
  • 150 Downloads

Abstract

Heavy metal pollution has become one of the most serious environmental problems nowadays. The removal of heavy metals from wastewaters has attracted a considerable attention because of their adverse effects on public health and ecosystems. The main objective of this work was to investigate the efficiency of the coupling of infiltration-percolation process with adsorption on activated carbon in the removal of heavy metals contained in urban wastewater effluents. The adsorption of heavy metals on a commercial sample of activated carbon was studied in a static mode. Several laboratory experiments made it possible to distinguish the optimum quantity of powdered activated carbon necessary to remove a large range of heavy metals. Results showed that the equilibrium of the adsorption was reached very quickly for cadmium (Cd2+), i.e., after 15 min of contact with the activated carbon. On the other hand, the equilibrium of zinc (Zn2+), lead (Pb2+) and copper (Cu2+) was achieved after 45 min. The withdrawal rates were 70.77% for Zn2+, 64.75% for Pb2+, 67.07% for Cu2+ and 78.42% for Cd2+. The adsorption isotherms determined for Zn2+, Pb2+, Cu2+ were of type I, while the shape of the Cd2+ curve showed a type II isotherm. These isotherms confirm the capacity of the powdered activated carbon to adsorb cadmium better than the other studied heavy metals.

Keywords

Adsorption Activated carbon Coupling Heavy metals Infiltration-percolation 

Notes

Acknowledgements

The authors would like to thank the Research Unit of Applied Hydro-Sciences of Gabès for the technical support.

References

  1. Aaki R (2012) Elimination des métaux lourds (Cd, Pb, Cr, Zn et As) des eaux usées industrielles et naturelles par le procédé d’infiltration-percolation. In: Doctoral Thesis, Ibn Zohr University, Agadir, p 149Google Scholar
  2. Akadar B (2014) Evaluation of effectiveness of domestic wastewater treatment by infiltration through sand and pozzolana in PVC columns. Int J Environ Res 8(3):515–522Google Scholar
  3. Al JAF (1999) Wastewater reuse in France: water quality standards and wastewater treatment technologies. Water Sci Technol 40:4–5Google Scholar
  4. Asano T, Cotruvo JA (2004) Groundwater recharge with reclaimed municipal wastewater: Health and regulatory considerations. Water Res 38(8):1941–1951CrossRefGoogle Scholar
  5. Babié B, Milonjié S, Polovina M, Cupié S, Kaludjerovié B (2002) Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon 40(7):1109–1115CrossRefGoogle Scholar
  6. Bali M (2012) Etude expérimentale et modélisation du traitement des eaux usées domestiques par procédé d’infiltration-percolation en zone aride. In: Doctoral Thesis, University of Tunis II, Tunisia, p 189Google Scholar
  7. Bali M, Gueddari M, Boukchina R (2011) Removal of contaminants and pathogens from secondary effluents using intermittent sand filters. Water Sci Technol 64(10):2038.  https://doi.org/10.2166/wst.2011.448 CrossRefGoogle Scholar
  8. Bali M, Jridi H, Farhat S, Louhichi B, Boukchina R (2016) Treatment of secondary effluents by infiltration-percolation process using sand fortified with activated charcoal. Int J Environ Sci Technol 14(6):1209–1216.  https://doi.org/10.1007/s13762-016-1222-x CrossRefGoogle Scholar
  9. Bortoleto GG, Macarovscha GT, Cadore S (2004) Determination of cadmium by flame-atomic absorption spectrometry after preconcentration on silica gel modified with cupferron. J Braz Chem Soc 15:313CrossRefGoogle Scholar
  10. Boulkrah H (2008) Etude comparative de l’adsorption des ions plomb sur différents adsorbants. Memory of Magister. Algéria University, Algeria, p 139pGoogle Scholar
  11. Boussahel R (2001) Recherche et dosage des pesticides présents dans l’eau en vue de leur elimination. In: Doctoral Thesis, Limoges University, LimogesGoogle Scholar
  12. Bouziane N (2007) Élimination du 2 mercaptobenzothiazole par voie photochimique et par adsorption sur la bentonite et le charbon actif en poudre. In: Doctoral Thesis, Algeria University, Algeria, p 184Google Scholar
  13. Brunauer S (1944) The adsorption of gases and vapors. Oxford University Press, Scientific Research Publish, Scientific Research, OxfordGoogle Scholar
  14. Creanga M (2007) Procédé AD-OX d’élimination de polluants organiques non biodégradables (par adsorption puis oxydation catalytique). In: Doctoral Thesis, National Polytechnic Institute of Toulouse, France, p 74Google Scholar
  15. Dabrowski A (2001) Adsorption from theory to practice. Adv Colloid Interface Sci 93:135–224CrossRefGoogle Scholar
  16. Escher B, Leusch F (2011) Bioanalytical tools in water quality assessment. Book Media Rev 21:52.  https://doi.org/10.1021/ed021 Google Scholar
  17. Göde C, Yola ML, Yılmaz A, Atar N, Wang S (2017) A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. J Colloid Interface Sci 508:525–531CrossRefGoogle Scholar
  18. Guediri A (2000) Etude expérimentale du traitement des eaux usées urbaines par le procédé d’infiltration percolation. In: Application to the Gabes D.E.A region of Applied Geology in the environment. University of Tunis II, Tunisia, p 105Google Scholar
  19. Gupta VK, Yola ML, Atar N, Solak AO, Uzunh L, Üstündag Z (2013a) Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples. Electrochim Acta 105:149–156CrossRefGoogle Scholar
  20. Gupta VK, Yola ML, Atar N, Ustundağ Z, Solak AO (2013b) A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim Acta 112:541–548CrossRefGoogle Scholar
  21. Houas A, Bakir I, Ksibi M, Elaloui E (1999) Étude de l’élimination de bleu de méthylène dans l’eau par le charbon actif commercial CECA40. J Phys Chem Phys Biol Chem 96(3):479–486Google Scholar
  22. IUPAC (1985) Recommendations. Pure Appl Chem 57:603Google Scholar
  23. Jankiewicz B, Ptaszynski B, Wieczorek M (2000) Spectrophotometric determination of cadmium (II) in soil of allotment gardens in Lodz. Pol J Environ Stud 9:83Google Scholar
  24. Jankowska H, Swiatkowski A, Choma J, Horwood Ellis, Sussex West, England Prentice-Hall, Englewood Cliffs NJ (1991) Active carbon. AIChE J 38:12.  https://doi.org/10.1002/aic.690381220 Google Scholar
  25. Lacoue-Labarthe T (2007) Incorporation des métaux dans les oeufs de la seiche commune Sepia officinalis et effets potentiels sur les fonctions digestives et immunitaires. In: Doctoral Thesis, The Rochelle University, Rochelle, p 200Google Scholar
  26. Liao HC, Jiang SJ (1999) Determination of cadmium, mercury and lead in coal fly ash by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 54:1233CrossRefGoogle Scholar
  27. Margot J, Magnet A, Thonney D, Chèvre N, Alencastro D, Felippe L, Rossi L (2011) Traitement des micropolluants dans les eaux usées. In: Final report on the pilot tests at the STEP from Vidy, LausanneGoogle Scholar
  28. Nadav I, Tarchitzky J, Chen Y (2017) Water repellency reduction using soil heating in infiltration ponds of a wastewater soil aquifer treatment (SAT). J Plant Nutr Soil Sci 180(2):142–152CrossRefGoogle Scholar
  29. Oladoja NA, Ademoroti CMA (2006) The use of fortified soil-clay as on-site system for domestic wastewater purification. Water Res 40(3):613–620.  https://doi.org/10.1016/j.watres.2005.11.031 CrossRefGoogle Scholar
  30. Slasli MA (2002) Modélisation de l’adsorption par les charbons microporeux: Approches théorique et expérimentale. In: Doctoral Thesis, Neuchâtel University, NeuchâtelGoogle Scholar
  31. Stevik KT, Kari A, Ausland G, Fredrik Hanssen J (2004) Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res 38(6):1355–1367CrossRefGoogle Scholar
  32. Varrault G (2011) Les contaminants dans les milieux recepteurs sous forte pression urbaines. Habilitation à diriger des recherches. Paris University, Paris, p 90Google Scholar
  33. Yola ML, Atar N, Qureshi MS, Üstündağ Z, Solak AO (2012) Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination. Sens Actuators B: Chem 171–172:1207–1215CrossRefGoogle Scholar
  34. Yola ML, Eren T, İlkimen H, Atar N, Yenikaya C (2014) A sensitive voltammetric sensor for determination of Cd(II) in human plasma. J Mol Liq 197:58–64CrossRefGoogle Scholar
  35. Ziati M, Hazourli S, Nouacer S, Zohra Khelaifia F, Nait N (2013) Adsorption de L’arsenic (III) sur Résidu naturel ligno-Cellulosique valorisé en Charbon actif: exemple des noyaux de dattes. Leban Sci J 14(1):73–85Google Scholar

Copyright information

© Islamic Azad University (IAU) 2018

Authors and Affiliations

  1. 1.Higher Institute of Sciences and Techniques of WatersUniversity of GabèsGabèsTunisia

Personalised recommendations