Skip to main content

Advertisement

Log in

Study of anaerobic biodegradation of pharmaceuticals and personal care products: application of batch tests

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This study evaluated three types of pharmaceuticals and personal care products (methylparaben, ibuprofen and triclosan) at concentration levels of 300, 500, 1000 and 2000 µg/L by implementing batch tests using anaerobic processes and granular biomass. The study aimed to identify the mechanisms of biodegradation and sorption in the degradation of these compounds. The inoculum was granular sludge from a laboratory-scale anaerobic reactor. The characterization results of the inoculum showed an anaerobic biomass with high activity, good sedimentation and a high percentage of organic matter. The results of the removal of the pollutants showed high degradation percentages for methylparaben (close to 99%), with negligible sorption in the sludge. The results also showed insignificant ibuprofen sorption but removal close to 0%. Triclosan showed high biomass sorption and low biodegradation. In addition, at the concentrations tested, none of the compounds had a negative or inhibitory effect on the microbial populations of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi T, Abbasi SA (2012) Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renew Sustain Energy Rev 16(3):1696–1708. doi:10.1016/j.rser.2011.11.017

    Article  CAS  Google Scholar 

  • Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S (2010) Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1217(44):6791–6806. doi:10.1016/j.chroma.2010.08.033

    Article  CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater. In: 22nd edn. American Public Health Association, Washington. p 1360 ISBN:978-087553-013-0

  • Arcos MC (2005) Fate of pharmaceutical care products (PPCPs) in sewage treatment plants focusing on the anaerobic digestion of sludge(doctoral thesis). Universidad Santiago de Compostela, Galicia, España

    Google Scholar 

  • Aubert N, Ameller T, Legrand J-J (2012) Systemic exposure to parabens: pharmacokinetics, tissue distribution, excretion balance and plasma metabolites of [14C]-methyl-, propyl- and butylparaben in rats after oral, topical or subcutaneous administration. Food Chem Toxicol 50:445–454. doi:10.1016/j.fct.2011.12.045

    Article  CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82(11):1518–1532. doi:10.1016/j.chemosphere.2010.11.018

    Article  CAS  Google Scholar 

  • Canosa P, Rodríguez I, Rubí E, Negreira N, Cela R (2006) Formation of halogenated by-products of parabens in chlorinated water. Anal Chim Acta 575(1):106–113. doi:10.1016/j.aca.2006.05.068

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM (2005) Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Res 39(19):4790–4796. doi:10.1016/j.watres.2005.09.018

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM (2007) Calculation methods to perform mass balances of micropollutants in sewage treatment plants. application to pharmaceutical and personal care products (PPCPs). Environ Sci Technol 41(3):884–890. doi:10.1021/es061581g

    Article  CAS  Google Scholar 

  • Carballa M, Finkb G, Omil F, Lema JM, Ternes T (2008a) Determination of the solid–water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Res 42:287–295. doi:10.1016/j.watres.2007.07.012

    Article  CAS  Google Scholar 

  • Carballa M, Francisco Omil, Lema JM (2008b) Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere 72(8):1118–1123. doi:10.1016/j.chemosphere.2008.04.034

    Article  CAS  Google Scholar 

  • Estevez E, Hernandez-Moreno JM, Fernandez-Vera JR, Palacios-Diaz MP (2014) Ibuprofen adsorption in four agricultural volcanic soils. Sci Total Environ 468–469:406–414. doi:10.1016/j.scitotenv.2013.07.068

    Article  CAS  Google Scholar 

  • Fan C, Wang H-C (2012) Degradation of methyl paraben by the aerated pebble-bed biofilm system. APCBEE Proc 1(January):299–303. doi:10.1016/j.apcbee.2012.03.049

    Article  CAS  Google Scholar 

  • Ferrando-Climent L, Collado N, Buttiglieri G, Gros M, Rodriguez-Roda I, Rodriguez-Mozaz S, Barceló D (2012) Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment. Sci Total Environ 438:404–413. doi:10.1016/j.scitotenv.2012.08.073

    Article  CAS  Google Scholar 

  • Girardi C, Nowak KM, Carranza-Diaz O, Lewkow B, Miltner A, Gehre M, Kästner M (2013) Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil—use and limits of data obtained from aqueous systems for predicting their fate in soil. Sci Total Environ 444:32–42. doi:10.1016/j.scitotenv.2012.11.051

    Article  CAS  Google Scholar 

  • González Mariño I, Benito Quintana J, Rodrıguez I, Cela R (2011) Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass. Water Res 45:6770–6780. doi:10.1016/j.watres.2011.10.027

    Article  CAS  Google Scholar 

  • Guadarrama P, Fomine S, Salcedo R, Martínez A (2008) Construction of simplified models to simulate estrogenic disruptions by esters of 4-hydroxy benzoic acid (parabens). Biophys Chem 137(1):1–6. doi:10.1016/j.bpc.2008.06.001

    Article  CAS  Google Scholar 

  • Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38(6):1376–1389. doi:10.1016/j.watres.2003.12.002

    Article  CAS  Google Scholar 

  • Je C-H, Chang S (2004) Simple approach to estimate flocculent settling velocity in a dilute suspension. Environ Geol 45(7):1002–1009

    Article  CAS  Google Scholar 

  • Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466–467:421–438. doi:10.1016/j.scitotenv.2013.07.044

    Article  CAS  Google Scholar 

  • Kumar A, Xagoraraki I (2010) Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking system. Sci Total Environ 408(23):5972–5989. doi:10.1016/j.scitotenv.2010.08.048

    Article  CAS  Google Scholar 

  • Lee DG, Zhao F, Rezenom YH, Russell DH, Chu K-H (2012) Biodegradation of triclosan by a wastewater microorganism. Water Res 46(13):4226–4234. doi:10.1016/j.watres.2012.05.025

    Article  CAS  Google Scholar 

  • Li W-W, Yu H-Q (2011) Physicochemical characteristics of anaerobic H2-producing granular sludge. Bioresour Technol 102(18):8653–8660. doi:10.1016/j.biortech.2011.02.110

    Article  CAS  Google Scholar 

  • Lin Y, Ferronato C, Deng N, Wu F, Chovelon J-M (2009) Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism. Appl Catal B Environ 88(1–2):32–41. doi:10.1016/j.apcatb.2008.09.026

    Article  CAS  Google Scholar 

  • Londoño YA, Peñuela GA (2015a) Anaerobic biological treatment of methylparaben in an expanded granular sludge bed (EGSB). Water Sci Technol 71(11):1604. doi:10.2166/wst.2015.118

    Article  CAS  Google Scholar 

  • Londoño YA, Peñuela GA (2015b) Biological removal of different concentrations of ibuprofen and methylparaben in a sequencing batch reactor (SBR). Water Air Soil Pollut 226(12):393. doi:10.1007/s11270-015-2654-5

    Article  CAS  Google Scholar 

  • Molina Peréz FJ (2007) Dynamic behavior of anaerobic digesters(tesis doctoral). Universidad Santiago de Compostela, Galicia, España

    Google Scholar 

  • Molina Peréz FJ, Rodriguez Loaiza DC, Puerta Bolivar BE (2008) Laboratory manual of biological process. Direccion de bienestrar universitario y el departamento de publicaciones, Medellín

    Google Scholar 

  • Puyol D, Mohedano AF, Rodriguez JJ, Sanz JL (2011) Effect of 2,4,6-trichlorophenol on the microbial activity of adapted anaerobic granular sludge bioaugmented with Desulfitobacterium strains. New Biotechnol 29(1):79–89. doi:10.1016/j.nbt.2011.06.011

    Article  CAS  Google Scholar 

  • Quero-Pastor MJ, Garrido-Perez MC, Acevedo A, Quiroga JM (2014) Ozonation of ibuprofen: a degradation and toxicity study. Sci Total Environ 466–467:957–964. doi:10.1016/j.scitotenv.2013.07.067

    Article  CAS  Google Scholar 

  • Rodriguez MDPC (2008) Desarrollo de metodología analítica para la determinación de triclosán y parabenes. aplicación al estudio de su distribución y transformación en muestras ambientales (tesis doctoral). Universidad Santiago de Compostela, Galicia, España

  • Rodriguez Loaiza DC (2009) Application of a SBR system for removal aggregate organic matter and nitrogen in wastewater of an industrial of processing meat (tesis maestria. Universidad de Antioquia, Medellín, Colombia

    Google Scholar 

  • Suarez S, Dodd MC, Omil F, Gunten VU (2007) Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation. Water Res 41(12):2481–2490. doi:10.1016/j.watres.2007.02.049

    Article  CAS  Google Scholar 

  • Suárez S, Reif R, Lema JM, Omil F (2012) Mass balance of pharmaceutical and personal care products in a pilot-scale single-sludge system: influence of T, SRT and recirculation ratio. Chemosphere 89(2):164–171. doi:10.1016/j.chemosphere.2012.05.094

    Article  CAS  Google Scholar 

  • Subramanyam R, Mishra IM (2008) Treatment of catechol bearing wastewater in an upflow anaerobic sludge blanket (UASB) reactor: sludge characteristics. Bioresour Technol 99(18):8917–8925. doi:10.1016/j.biortech.2008.04.067

    Article  CAS  Google Scholar 

  • Svenningsen H, Henriksen T, Priemé A, Johnsen AR (2011) Triclosan affects the microbial community in simulated sewage-drain-field soil and slows down xenobiotic degradation. Environ Pollut 159(159):1599–1605. doi:10.1016/j.envpol.2011.02.052

    Article  CAS  Google Scholar 

  • Torres Lozada P, Pérez A (2010) Actividad metanogénica específica: una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales. Redalyc 9(1692–9918):5–14

    Google Scholar 

  • Vo TTB, Yoo Y-M, Choi K-C, Jeung E-B (2010) Potential estrogenic effect(s) of parabens at the prepubertal stage of a postnatal female rat model. Reprod Toxicol 29(3):306–316. doi:10.1016/j.reprotox.2010.01.013

    Article  CAS  Google Scholar 

  • Yang X, Flowers RC, Weinberg HS, Singer PC (2011) Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res 45(16):5218–5228. doi:10.1016/j.watres.2011.07.026

    Article  CAS  Google Scholar 

  • Ying G-G, Yu X-Y, Kookana RS (2007) Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ Pollut 150(3):300–305. doi:10.1016/j.envpol.2007.02.013

    Article  CAS  Google Scholar 

  • Zarate FM, Schulwitz SE, Stevens KJ, Venables BJ (2012) Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland. Chemosphere 88(3):323–329. doi:10.1016/j.chemosphere.2012.03.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the GDCON group and the 2016–2017 Sustainability Research Fund of the University of Antioquia for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Londoño.

Additional information

Editorial responsibilty: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londoño, Y.A., Peñuela, G.A. Study of anaerobic biodegradation of pharmaceuticals and personal care products: application of batch tests. Int. J. Environ. Sci. Technol. 15, 1887–1896 (2018). https://doi.org/10.1007/s13762-017-1562-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1562-1

Keywords

Navigation