Skip to main content

Advertisement

Log in

Methane oxidation capacity of methanotrophs isolated from different soil ecosystems

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Methane is one of the potential greenhouse gases contributing to global climate change, with a global warming potential of about 25 times than that of carbon dioxide. Aerobic methane oxidation (methanotrophy) is the key process that counteracts emission of methane to atmosphere. In this study, methane oxidation capacity of different methane-oxidizing bacteria (methanotrophs) isolated from six different ecosystems was investigated. Methanotrophic consortium isolated from dumpsite proved to be most effective in oxidizing methane. Initially, methane oxidation rate was found to be 0.72 ± 0.036 mM/day; in course of the study consortium M5 showed an increase in methane oxidation rate up to 1.7 ± 0.016 mM/day. A maximum of 0.78 mol of CO2 production was found during methane oxidation in methanotrophs from dumpsite (M5). While varying temperatures, methane oxidation rate was in the range of 1.3–1.7 mM/day which has been found in the temperature range of 30–40 °C. Even at higher temperature (50 °C), 0.076 ± 0.14 mM of the methane was utilized per day. Methane oxidation was assessed by Michaelis–Menten kinetics. By varying the methane concentration, methane oxidation was studied and kinetic parameters such as V max and K m were derived using Lineweaver–Burk plot and found to be 1.497 mM/day and 2.23 mM, respectively. In methane mitigation approach, Methane soil sink is very essential because a balance between methane production by methanogens and consumption by methanotrophs plays an important role in methane emission reduction. Enhancing the methane soil sink will be a cost-effective method to cut down methane emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alshareedah A, Sallis P (2016) Methanotrophic oxygen dependency and availability for sustained oxidation. Int J Waste Resour 6:249. doi:10.4172/2252-5211.1000249

    Article  Google Scholar 

  • Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp strain SC2. Proc Natl Acad Sci USA 105:10203–10208

    Article  CAS  Google Scholar 

  • Borjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48:305–312

    Article  CAS  Google Scholar 

  • Bousquet P, Ciais P, Miller JB, Dlugokencky EJ, Hauglustaine DA, Prigent C, Van der Werf GR, Peylin P, Brunke EG, Carouge C, Langenfelds RL, Lathière J, Papa F, Ramonet M, Schmidt M, Steele LP, Tyler SC, White J (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  CAS  Google Scholar 

  • Bowman JP, Skerratt JH, Nichols PD (1991) Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane utilizing bacteria. FEMS Microbiol Lett 85:15–21

    Article  CAS  Google Scholar 

  • Cai Y et al (2016) Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 7:11728

    Article  CAS  Google Scholar 

  • Chang CY, Tung HH, Tseng IC, Wu JH, Liu YF, Lin YF (2010) Dynamics of methanotrophic communities in tropical alkaline landfill upland soil. Appl Soil Ecol 46:192–199

    Article  Google Scholar 

  • Chiemchaisri WC (2012) Reduction of methane emission from landfill through microbial activities in cover soil: a brief review. Crit Rev Environ Sci Technol 42(4):412–434

    Article  CAS  Google Scholar 

  • Conrad R, Klose M, Claus P, Enrich-Prast A (2010) Methanogenic pathway, 13 C isotope fractionation, and archaeal community composition in the sediment of two clearwater lakes of Amazonia. Limnol Oceanogr 55:689–702

    CAS  Google Scholar 

  • Dianou D, Espiritu BM, Adachi K, Senboku T (1997) Isolation and some properties of methane-oxidizing bacteria from a subtropical paddy field. Soil Sci Plant Nutr 43(3):735–740

    Article  CAS  Google Scholar 

  • Dlugokencky EJ, Bruhwiler L (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36:18

    Article  CAS  Google Scholar 

  • Einola JKM, Kettunen RH, Rintala JA (2007) Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biol Biochem 39:1156–1164

    Article  CAS  Google Scholar 

  • Eller G, Stubner S, Frenzel P (2001) Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol Lett 198(2):91–97

    Article  CAS  Google Scholar 

  • Escoffier S, Le Mer J, Roger PA (1997) Enumeration of methanotrophic bacteria in rice field soils by plating and MPN techniques: a critical approach. Bir J Soil Biol 33:41–51

    Google Scholar 

  • Gebert J, Groengroeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilters. Waste Manag 23(7):609–619

    Article  CAS  Google Scholar 

  • Harris RC, Sebacher DI, Day FP (1982) Methane flux in the great dismal swamp. Nature 297:673–674

    Article  Google Scholar 

  • Henckel T, Jackel U, Conrad R (2001) Vertical distribution of the methanotrophic community after drainage of rice field soil. FEMS Microbiol Ecol 34:279–291

    Article  CAS  Google Scholar 

  • Inglett KS, Chanton JP, Inglett PW (2014) Methanogenesis and methane oxidation in wetland soils. In: DeLaune RD, Reddy KR, Richardson CJ, Megonigal JP (eds) Methods in biogeochemistry of wetlands. SSSA book series 10. Soil science society of America, Madison, Wisconsin, pp 407–425

  • IPCC (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of working group I to fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, NY, USA, p 1535

  • Jackel U, Thummes K, Kampfer P (2005) Thermophilic methane production and oxidation in compost. FEMS Microbiol Ecol 52:175–184

    Article  CAS  Google Scholar 

  • Jayanthi B, Agamuthu P (2011) Enhancement of methane oxidation with effective methanotrophic mixed cultures. Malays J Sci 30(1):28–35

    Article  Google Scholar 

  • Jhala YK (2016) Rapid Methods for Isolation and Screening of Methane Degrading Bacteria. J Bioremediat Biodegrad 7(1):322. doi:10.4172/2155-6199.1000322

    Google Scholar 

  • Jhala YK, Vyas RV, Shelat HN, Patel HK, Patel KT (2014) Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microb Biotechnol 30:1845–1860

    Article  CAS  Google Scholar 

  • Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288

    Article  CAS  Google Scholar 

  • Han JS, Mahanty B, Yoon SU, Kim CG (2016) Activity of a methanotrophic consortium isolated from landfill cover soil: response to temperature, pH, CO2, and porous adsorbent. Geomicrobiol J 33(10):878–885

    Article  CAS  Google Scholar 

  • Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S et al (2016) Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia. Environ Sci Pollut Res 23:4346

    Article  CAS  Google Scholar 

  • Keller M, Goreau TJ, Wofsy SC, Kaplan WA, McElroy MB (1983) Production of nitrous oxide and consumption of methane by forest soils. Geophys Res Lett 10:1156–1159

    Article  CAS  Google Scholar 

  • Kizilova A, Yurkov A, Kravchenko I (2013a) Aerobic methanotrophs in natural and agricultural soils of European Russia. Diversity 5:541–556

    Article  Google Scholar 

  • Kizilova AK, Sukhachev MV, Pimenov NV, Yurkov AM, Kravchenko IK (2013b) Methane oxidation activity and diversity of aerobic methanotrophs in pH-neutral and semi-neutral thermal springs of the Kunashir Island. Rus Far East Extremophiles. doi:10.1007/s00792-013-0603

    Article  Google Scholar 

  • Kolb S (2009) The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep 1:336–346

    Article  CAS  Google Scholar 

  • Kolb S, Knief C, Dunfield PF, Conrad R (2005) Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ Microbiol 7:1150–1161

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37(1):25–50

    Article  Google Scholar 

  • Le Mer J, Escoffer S, Chessel C, Roger PA (1996) Microbiological aspects of methane emission in a rice field soil from the Camargue (France) Methanotrophy related microflora. Eur J Soil Biol 32:71–80

    CAS  Google Scholar 

  • Lee EH, Park H, Cho KS (2013) Biodegradation of methane, benzene and toluene by a consortium MBT14 enriched from a landfill cover soil. J Environ Sci Health Part A. 48(3):273–278

    Article  CAS  Google Scholar 

  • Lee EH, Yi T, Moon KE, Park H, Ryu HW, Cho KS (2011) Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, South Korea. J Microbiol Biotechnol 21(7):753–756

    Article  Google Scholar 

  • Lu WJ, Chi ZF, Mou ZS, Long YY, Wang HT, Zhu Y (2011) Can a breathing biocover system enhance methane emission reduction from landfill? J Hazard Mater 191:228–233

    Article  CAS  Google Scholar 

  • Luke C, Krause S, Cavigiolo S, Greppi D, Lupotto E, Frenzel P (2010) Biogeography of wetland rice methanotrophs. Environ Microbiol 12:862–872

    Article  CAS  Google Scholar 

  • Mancebo U, Hettiaratchi JPA (2015) Rapid assessment of methanotrophic capacity of compost-based materials considering the effects of air-filled porosity, water content and dissolved organic carbon. Bioresour Technol 177:125–133

    Article  CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31

    Article  CAS  Google Scholar 

  • Mosier A, Schimel D, Valentine D, Bronson K, Parton W (1991) Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands. Nature 3(50):330–332

    Article  Google Scholar 

  • Otter LB, Scholes MC (2000) Methane sources and sinks in a periodically flooded South African Savanna. Global Biogeochem Cycles. doi:10.1029/1999GB900068

    Article  Google Scholar 

  • Pandey VC, Singh JS, Singh DP, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11(1):241–250

    Article  CAS  Google Scholar 

  • Pariatamby A, Cheah WY, Shrizal R, Thamlarson N, Lim BT, Barasarathi J (2014) Enhancement of landfill methane oxidation using different types of organic wastes. Environ Earth Sci 72:1–8

    Article  CAS  Google Scholar 

  • Rasigraf O, Kool DM, Jetten MSM, Damsté JS, Ettwig KFS (2014) Autotrophic carbon dioxide fixation via the calvin-benson-bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80(8):2451–2460

    Article  CAS  Google Scholar 

  • Reeburgh WS, Whalen SC, Alperin MJ (1993) The role of methylotrophy in the global methane budget. In: Microbial growth on C1 compounds. Intercept press, pp 1–14

  • Scheutz C, Kjeldsen P (2004) Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. J Environ Qual 33:72–79

    Article  CAS  Google Scholar 

  • Scheutz C, Pedicone A, Pedersen GB, Kjeldsen P (2011) Evaluation of respiration in compost landfill biocovers intended for methane oxidation. Waste Manag 31:895–902

    Article  CAS  Google Scholar 

  • Shukla PN, Pandey KD, Mishra VK (2013) environmental determinants of soil methane oxidation and methanotrophs. Crit Rev Environ Sci Technol 43:18

    Article  CAS  Google Scholar 

  • Singh BK, Tate KR, Ross DJ, Singh J et al (2009) Soil methane oxidation and methanotroph responses to afforestation of pastures with Pinus radiata stands. Soil Biol Biochem 41:2196–2205

    Article  CAS  Google Scholar 

  • Söhngen NL (1906) Über Bakterien, welche Methan als Kohlenstoffnahrung and Energiequelle gebrauchen. Zentralbl Bakteriol Parasitik. Abt I 15:513–517

    Google Scholar 

  • Steenbergh AK, Meima MM, Kamst M, Bodelier LEP (2010) Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell. FEMS Microbiol Ecol 71:12–22

    Article  CAS  Google Scholar 

  • Stein VB, Hettiaratchi JP (2001) Methane oxidation in three Alberta soils: influence of soil parameters and methane flux rates. Environ Technol 22:101–111

    Article  CAS  Google Scholar 

  • Stepniewska Z, Goraj W, Kuzniar A, Lopacka N, Malysza M (2017) Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants. Folia Microbiol. doi:10.1007/s12223-017-0508-9

    Article  Google Scholar 

  • Sujith PP, Sheba MV, Gonsalves MJBD (2016) Diversity and activity of methanotrophic related bacteria in subsurface sediments of the Krishna–Godavari Basin, India. Curr Sci 110(9):1801–1809

  • Tavormina PL, Hatzenpichler R, McGlynn S, Chadwick G, Dawson KS, Connon SA, Orphan VJ (2015) Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the ‘deep sea-1’ clade of marine methanotrophs. Int J Syst Evol Microbiol 65:251–259

    Article  CAS  Google Scholar 

  • Torres-Alvarado R, Ramírez-Vives F, Fernándeze FJ, Barriga-Sosa I (2005) Methanogenesis and methane oxidation in wetlands. Implications in the global carbon cycle. Hidrobiológica 15(3):327–349

    Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–230

    Article  CAS  Google Scholar 

  • Van der Ha D, Hoefman S, Boeckx P, Verstraete W, Boon N (2010) Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. Appl Microbiol Biotechnol 87:2355–2363

    Article  CAS  Google Scholar 

  • Walkiewicz A, Bulak P, Brzeziñska M, Wodarczyk T, Polakowski C (2012) Kinetics of methane oxidation in selected mineral soils. Int Agrophys 26:401–406

    Article  CAS  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    Article  CAS  Google Scholar 

  • Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65:4887–4897

    CAS  Google Scholar 

  • Zheng Y, Huang R, Wang BZ, Bodelier PLE, Jia ZJ (2014) Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences 11:3353–3368

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was funded by University Grants Commission-Basic Scientific Research fellowship (M.H.No.6.2.40—UGC RESEARCH FELLOWSHIP) for Ph.D. studentship, which is gratefully acknowledged. I also thank Murugappa Chettiar Research Centre (MCRC) Tharamani, Chennai, for helping me in analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Brindha.

Additional information

Editorial responsibility: U.W. Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brindha, R.K., Vasudevan, N. Methane oxidation capacity of methanotrophs isolated from different soil ecosystems. Int. J. Environ. Sci. Technol. 15, 1931–1940 (2018). https://doi.org/10.1007/s13762-017-1546-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1546-1

Keywords

Navigation