Skip to main content

Coal fly ash and steel slag valorisation throughout a vitrification process

Abstract

The aim of this research was to evaluate the feasibility of using the vitrification process as an alternative solution to the disposal of a coal fly ash and metallurgical slags in landfills. The starting wastes were characterised in terms of chemical, granulometric, mineralogical, and microstructural analysis. A selected batch composition composed by 58.5% fly ash, 31.5% metallurgical slag and 10.0 Na2O% (wt%) was melted at 1450 °C and poured to obtain monolithic glass samples. The environmental behaviour of the starting wastes and the resulting glass was evaluated by standard leaching tests, which shows that vitrification leads to a stabilisation process in which the inorganic components of the wastes are immobilised throughout their incorporation into the glass structure. Moreover, vitrification transforms those hazardous wastes into a new non-hazardous glass. A preliminary study shows that the new glass is suitable for developing glass–ceramic tiles appropriate for floor pavement and wall covering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • 2003/33/EC (2003) Council decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to article 16 of and annex II to directive 1999/31/EC (2203). Off J Eur Communities L11:27–49

  • Eliche-Quesada D, Leite-Costa J (2016) Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks. Waste Manage 48:323–333. doi:10.1016/j.wasman.2015.11.042

    Article  CAS  Google Scholar 

  • Erol M, Genҫ A, Öveҫoǧlu ML, Yϋcelen E, Kϋҫϋkbayrak S, Taptik Y (2000) Characterization of a glass–ceramic produced from thermal power plant fly ashes. J Eur Ceram Soc 20:2209–2214. doi:10.1016/S0955-2219(00)00099-6

    Article  CAS  Google Scholar 

  • Faleschini F, Zanini MA, Brunelli K, Pellegrino C (2015) Valorization of co-combustion fly ash in concrete production. Mater Des 85:687–694. doi:10.1016/jmatdes201507079

    Article  CAS  Google Scholar 

  • Fernández Navarro JM (2003) El vidrio, 3rd edn. Editorial SCIC, Madrid

    Google Scholar 

  • Fomenko EV, Anshits NN, Solovyov LA, Mikhaylova OA, Anshits AG (2013) Composition and morphology of fly ash cenospheres produced from the combustion of Kuznetsk coal. Energy Fuels 27:5440–5448. doi:10.1021/ef400754c

    Article  CAS  Google Scholar 

  • Gallardo M, Almanza JM, Cortés DA, Escobedo JC, Escalante-García J (2014) Synthesis and mechanical properties of a calcium sulphoaluminate cement made of industrial wastes. Mater Constr 64:e023. doi:10.3989/mc201404513

    Article  Google Scholar 

  • Iyer S, Scott JA (2001) Power station fly ash-a review of value-added utilization outside of the construction industry. Resour Conserv Recycl 31:217–228. doi:10.1016/S0921-3449(00)00084-7

    Article  Google Scholar 

  • Jarosz-Krzeminska E, Helios-Rybicka E, Gawlicki M (2015) Utilization of neutralized spent sulfuric acid pickle liquor from metal treatment in cement production. Int J Environ Sci Technol 12:2901–2908. doi:10.1007/s13762-014-0694-9

    Article  CAS  Google Scholar 

  • Jayaranjan MLD, Van Hullebusch ED, Annachhatre AP (2014) Reuse options for coal fired power plant bottom ash and fly ash. Rev Environ Sci Bio 13:467–486. doi:10.1007/s11157-014-9336-4

    Article  CAS  Google Scholar 

  • Karamanov A, Chabbach LM, Karamanova E, Andreola F, Barbieri L, Ranguelov B, Avdeev G, Lancellotti I (2014) Sinter-crystallization in air and inert atmospheres of a glass from pre-treated municipal solid waste bottom ashes. J Non Cryst Solids 389:50–59. doi:10.1016/jjoncrysol201402009

    Article  CAS  Google Scholar 

  • Kim JM, Kim HS (2004) Processing and properties of a glass–ceramic from coal fly ash from a thermal power plant through an economic process. J Eur Ceram Soc 24:2825–2833. doi:10.1016/jjeurceramsoc200308012

    Article  CAS  Google Scholar 

  • Ljatifi E, Kamusheva A, Grozdanov A, Paunovic P, Karamanov A (2015) Optimal thermal cycle for production of glass–ceramic based on wastes from ferronickel manufacture. Ceram Int 41:11379–11386. doi:10.1016/jceramint201505098

    Article  CAS  Google Scholar 

  • López O, Mayor PL, Fernández F, Hernandez-Olivares F (2015) Improved cement mortars by addition of carbonated fly ash from solid waste incinerators. Mater Constr 65:e062. doi:10.3989/mc201507114

    Article  Google Scholar 

  • Martínez-Martínez S, Pérez-Villarejo L, Eliche-Quesada D, Carrasco-Hurtado B, Sánchez-Soto PJ, Angelopoulos GN (2016) Ceramics from clays and by-product from biodiesel production: processing, properties and microstructural characterization. Appl Clay Sci 121:119–126. doi:10.1016/jday201512003

    Article  Google Scholar 

  • Pan DA, Li LJ, Yang J, Bu JB, Guo B, Liu B, Zhang SG, Volinsky AA (2015) Production of glass–ceramics from heavy metal gypsum and pickling sludge. Int J Environ Sci Technol 12:3047–3052. doi:10.1007/s13762-015-0758-5

    Article  CAS  Google Scholar 

  • Pani GK, Rath P, Maharana L, Barik R, Senapati PK (2016) Assessment of heavy metals and rheological characteristics of coal ash samples in presence of some selective additives. Int J Environ Sci Technol 13:25–731. doi:10.1007/s13762-015-0888-9

    Article  CAS  Google Scholar 

  • Paul A (1990) Chemistry of glasses, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  • Pérez M, Baeza F, Paya J, Saval JM, Zornoza E, Borrachero MV, Garces P (2014) Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks. Mater Constr 64:e002. doi:10.3989/mc201406312

    Article  Google Scholar 

  • Ram LC, Masto RE (2010) An appraisal of the potential use of fly ash for reclaiming coal mine spoil. J Environ Manag 91:603–617. doi:10.1016/jjenvman200910004

    Article  CAS  Google Scholar 

  • Ram LC, Masto RE (2014) Fly ash for soil amelioration: a review on the influence of ash blending with inorganic and organic amendments. Earth Sci Rev 128:52–74. doi:10.1016/jearscirev201310003

    Article  CAS  Google Scholar 

  • Reuter M, Xiao Y, Boin U (2004) Recycling and environmental issues of metallurgical slags and salt fluxes. In: II international conference on molten slags fluxes and salts. The South African Institute of Mining and Metallurgy, pp 349–356

  • Rodríguez Cuartas R (1984) Theoretical calculation of glass properties: viscosity, thermal and devitrification parameters. Bol Soc Esp Ceram Vidr 23:105–111 (in Spanish)

    Google Scholar 

  • Romero M, Kovacova M, Rincón J Ma (2008) Effect of particle size on kinetics crystallization of an iron-rich glass. J Mater Sci 43:4135–4142. doi:10.1007/s10853-007-2318-y

    Article  CAS  Google Scholar 

  • Saikia N, Mertens G, Van Balen K, Elsen J, Van Gerven T, Vandecasteele C (2015) Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar. Constr Build Mater 96:76–85. doi:10.1016/jconbuildmat201507185

    Article  Google Scholar 

  • Scalet BM, Garcia Muñoz M, Sissa AQ, Roudier S, Delgado Sancho L (2013) Best available techniques (BAT) reference document for the manufacture of glass. Industrial emissions directive 2010/75/EU integrated pollution prevention and control

  • Seyyedalipour SF, Kebria DY, Dehestani M (2015) Effects of recycled paperboard mill wastes on the properties of non-load-bearing concrete. Int J Environ Sci Technol 12:3627–3634. doi:10.1007/s13762-015-0879-x

    Article  CAS  Google Scholar 

  • Sharma P, Joshi H (2016) Utilization of electrocoagulation-treated spent wash sludge in making building blocks. Int J Environ Sci Technol 13:349–358. doi:10.1007/s13762-015-0845-7

    Article  CAS  Google Scholar 

  • Sheng J (2001) Vitrification of borate waste from nuclear power plant using coal fly ash (I) glass formulation development. Fuel 80:1365–1369. doi:10.1016/S0016-2361(01)00022-9

    Article  CAS  Google Scholar 

  • Skousen J, Ziemkiewicz ZP, Yang JE (2012) Use of coal combustion by-products in mine reclamation: review of case studies in the USA. Geosyst Eng 15:71–83. doi:10.1080/122693282012676258

    Article  Google Scholar 

  • Verbinnen B, Block C, Van Caneghem J, Vandecasteele C (2015) Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics. Waste Manage 45:407–411. doi:10.1016/jwasman201507006

    Article  CAS  Google Scholar 

  • Wang SM, Zhang CX, Chen JD (2014) Utilization of coal fly ash for the production of glass–ceramics with unique performances: a brief review. J Mater Sci Technol 30:1208–1212. doi:10.1016/jjmst201410005

    Article  Google Scholar 

  • Wee JH (2013) A review on carbon dioxide capture and storage technology using coal fly ash. Appl Energy 106:143–151. doi:10.1016/japenergy201301062

    Article  CAS  Google Scholar 

  • Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121. doi:10.1016/jearscirev201411016

    Article  Google Scholar 

  • Zheng YJ, Jensen AD, Windelin J, Jensen F (2012) Review of technologies for mercury removal from flue gas from cement production processes. Prog Energy Combust Sci 38:599–629. doi:10.1016/jpecs201205001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. P. Díaz and Mrs. E. Sánchez for their technical assistance. H. R. Guzmán-Carrillo wants to thank CONACyT for scholarship (Grant No. 311363) and to Prof. J. Ma. Rincón from the IETcc-CSIC for his valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Romero.

Additional information

Editorial responsibility: Q. Aguilar-Virgen.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Carrillo, H.R., Pérez, J.M., Aguilar Reyes, E.A. et al. Coal fly ash and steel slag valorisation throughout a vitrification process. Int. J. Environ. Sci. Technol. 15, 1757–1766 (2018). https://doi.org/10.1007/s13762-017-1542-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1542-5

Keywords