Advertisement

Influence of the slags treatment on the heavy metals binding

  • L. Bláhová
  • Z. Navrátilová
  • M. Mucha
  • E. Navrátilová
  • V. Neděla
Original Paper
  • 181 Downloads

Abstract

The removal of Cu(II) and Pb(II) was studied on two types of slags (blast furnace and steelmaking slag) and their modifications prepared by leaching with demineralized water (with contact time 24 and 48 h) and 0.001 mol L−1 HCl solution. The slags and their modifications were characterized by x-ray fluorescence spectroscopy, x-ray diffraction, infrared spectroscopy, and the specific surface area was measured. Environmental scanning electron microscope was used to study the microscopic changes of the slags. The highest removal amounts of Cu(II) were found on the blast furnace slag leached for 48 h. This fact can be explained by the higher specific surface area of the leached blast furnace slag; the removal of Cu(II) is supposed to take place by co-precipitation of its hydroxides or hydroxo-complexes on the slag surface. On the contrary, the modified steelmaking slags exhibit no improvement of the removal properties. The used treatment of the slags decreased the sorption capacities for Pb(II). The original steelmaking slag showed to be the best adsorbent for both metal cations.

Keywords

Slag Binding Metal cations Slag modification 

Notes

Acknowledgements

The work was supported by the project of Faculty of Sciences, University of Ostrava, No. SGS08/PŘF/2015. Authors thank to Ing. Soňa Študentová (Laboratory of textural parameters, Department of Chemistry, Faculty of Metallurgy and Material Engineering, VŠB-Technical University Ostrava) for the measurement of specific surface area of the studied materials.

References

  1. Bláhová L, Mucha M, Navrátilová Z, Gorošová S (2015) Sorption properties of slags. Inżynieria Mineralna J Pol Miner Eng Soc 36:89–94Google Scholar
  2. Burmistrz P, Rozwadowski A, Burmistrz M, Karcz A (2014) Coke dust enhances coke plant wastewater treatment. Chemosphere 117:278–284. doi: 10.1016/j.chemosphere.2014.07.025 CrossRefGoogle Scholar
  3. Cretescu I, Soreanu G, Harja M (2014) A low-cost sorbent for removal of copper ions from wastewaters based on sawdust/fly ash mixture. Int J Environ Sci Technol 12:1799–1810. doi: 10.1007/s13762-014-0596-x CrossRefGoogle Scholar
  4. Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50:40–57. doi: 10.1016/j.resconrec.2006.05.008 CrossRefGoogle Scholar
  5. Dimitrova SV (1996) Metal sorption on blast-furnace slag. Water Res 30:228–230. doi: 10.1016/0043-1354(95)00104-S CrossRefGoogle Scholar
  6. Dimitrova SV, Mehanjiev DR (2000) Interaction of blast-furnace slag with heavy metal ions in water solutions. Water Res 34:1957–1961. doi: 10.1016/S0043-1354(99)00328-0 CrossRefGoogle Scholar
  7. Dimitrova SV (2002) Use of granular slag columns for lead removal. Water Res 36(16):4001–4008. doi: 10.1016/S0043-1354(02)00120-3 CrossRefGoogle Scholar
  8. El-Eswed BI, Aldagag OM, Khalili FI (2017) Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Appl Clay Sci 140:148–156. doi: 10.1016/j.clay.2017.02.003 CrossRefGoogle Scholar
  9. Fredericci C, Zanotto ED, Ziemath EC (2000) Crystallization mechanism and properties of a blast furnace slag glass. J Non-Cryst Solids 273:64–75. doi: 10.1016/S0022-3093(00)00145-9 CrossRefGoogle Scholar
  10. Gao H, Song Z, Zhang W, Yang X, Wang X, Wang D (2017) Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove Methyl Orange from aqueous solution. J Environ Sci 53:68–77. doi: 10.1016/j.jes.2016.05.014 CrossRefGoogle Scholar
  11. Genz A, Oguz A (2010) Sorption of acid dyes from aqueous solution by using non-ground ash and slag. Desalination 264:78–83. doi: 10.1016/j.desal.2010.07.007 CrossRefGoogle Scholar
  12. Guo X, Zhang S, Shan X (2008) Adsorption of metal ions on lignin. J Hazard Mater 151:134–142. doi: 10.1016/j.jhazmat.2007.05.065 CrossRefGoogle Scholar
  13. Han C, Wang Z, Yang W, Wu Q, Yang H, Xue X (2016) Effects of pH on phosphorus removal capacities of basic oxygen furnace slag. Ecol Eng 89:1–6. doi: 10.1016/j.ecoleng.2016.01.004 CrossRefGoogle Scholar
  14. Hanzlík J, Jehlička J, Šebek O, Weishauptová Z, Machovič V (2004) Multi-component adsorption of Ag(I), Cd(II) and Cu(II) by natural carbonaceous materials. Water Res 38:2178–2184. doi: 10.1016/j.watres.2004.01.037 CrossRefGoogle Scholar
  15. Kapur M, Mondal MK (2014) Competitive sorption of Cu(II) and Ni(II) ions from aqueous solutions: kinetics, thermodynamics and desorption studies. J Taiwan Inst Chem Eng 45:1803–1813. doi: 10.1016/j.jtice.2014.02.022 CrossRefGoogle Scholar
  16. Kim D-H, Shin M-C, Choi H-D, Seo C-I, Baek K (2008) Removal mechanisms of copper using steel-making slag: adsorption and precipitation. Desalination 223:283–289. doi: 10.1016/j.desal.2007.01.226 CrossRefGoogle Scholar
  17. Kohutová H, Kostura B, Kukutschová J, Matýsek D (2014) Oxyhumolite influence on adsorption and desorption of phosphate on blast furnace slag in the process of two-stage selective adsorption of Cu(II) and phosphate. Chem Pap 68:766–773. doi: 10.2478/s11696-013-0508-4 CrossRefGoogle Scholar
  18. Kostura B, Kulveitová H, Leško J (2005) Blast furnace slags as sorbents of phosphate from water solutions. Water Res 39:1795–1802. doi: 10.1016/j.watres.2005.03.010 CrossRefGoogle Scholar
  19. Liu S-Y, Gao J, Yang Y-J, Yang Y-Ch, Zhi-Xiang Y (2010) Adsorption intrinsic kinetics and isotherms of lead ions on steel slag. J Hazard Mater 173:558–562. doi: 10.1016/j.jhazmat.2009.08.122 CrossRefGoogle Scholar
  20. Medusa-Hydra (2017) Chemical equilibrium diagrams. https://sites.google.com/site/chemdiagr/download. Accessed 15 May 2017
  21. Mustafa D, Naeem B, Rehana N, Nagris K (2003) Temperature and pH Effect on the Sorption of Divalent Metal Ions by Silica Gel. Adsorpt Sci Technol 21:297–307. doi: 10.1260/026361703322405033 CrossRefGoogle Scholar
  22. Nicolae M, Vîlciu I, Zăman F (2007) X-ray diffraction analysis of steel slag and blast furnace slag viewing their use for road construction. U.P.B. Sci Bull Ser B 69:99–108Google Scholar
  23. Ragheb SM (2013) Phosphate removal from aqueous solution using slag and fly ash. HBRC J 9:270–275. doi: 10.1016/j.hbrcj.2013.08.005 CrossRefGoogle Scholar
  24. Repo E, Warchoł JK, Westholm LJ, Sillanpää M (2015) Steel slag as a low-cost sorbent for metal removal in the presence of chelating agents. J Ind Eng Chem 27:115–125. doi: 10.1016/j.jiec.2014.12.025 CrossRefGoogle Scholar
  25. Runtti H, Luukkonen T, Niskanen M, Tuomikoski S, Kangas T, Tynälä P, Tolonen E-T, Sarkkinen M, Kemppainen K, Rämö J, Lassi U (2016) Sulphate removal over barium-modified blast-furnace-slag geopolymer. J Hazard Mater 317:373–384. doi: 10.1016/j.jhazmat.2016.06.001 CrossRefGoogle Scholar
  26. Sdiri AT, Higashi T, Jamoussi F (2014) Adsorption of copper and zinc onto natural clay in single and binary systems. Int J Environ Sci Technol 11:1081–1092. doi: 10.1007/s13762-013-0305-1 CrossRefGoogle Scholar
  27. Sheikhhosseini A, Shirvani M, Shariatmadari H (2013) Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals. Geoderma 192:249–253. doi: 10.1016/j.geoderma.2012.07.013 CrossRefGoogle Scholar
  28. Sipos P (2010) Sorption of copper and lead on soils and soil clay fraction with different clay mineralogy. Carpathian J Earth Environ Sci 5:111–118Google Scholar
  29. Troca-Torrado C, Alexandre-Franco M, Fernández-Gonzalez C, Alfaro-Domínguez M, Gómez-Serrano V (2011) Development of adsorbents from used tire rubber. Fuel Process Technol 92:206–212. doi: 10.1016/j.fuproc.2010.03.007 CrossRefGoogle Scholar
  30. Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C (2008) Utilization of steel slag for Portland cement clinker production. J Hazard Mater 152:805–811. doi: 10.1016/j.jhazmat.2007.07.093 CrossRefGoogle Scholar
  31. van Zomeren A, van der Laan S, Kobesen HBA, Huijgen WJJ, Comans RNJ (2011) Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manag 31:2236–2244. doi: 10.1016/j.wasman.2011.05.022 CrossRefGoogle Scholar
  32. Xue Y, Hou H, Zhu S (2009a) Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study. Chem Eng J 147:272–279. doi: 10.1016/j.cej.2008.07.017 CrossRefGoogle Scholar
  33. Xue Y, Hou H, Zhu S (2009b) Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag. J Hazard Mater 162:391–401. doi: 10.1016/j.jhazmat.2008.05.072 CrossRefGoogle Scholar
  34. Xue Y, Wu S, Zhou M (2013) Adsorption characterization of Cu(II) from aqueous solution onto basic oxygen furnace slag. Chem Eng J 231:355–364. doi: 10.1016/j.cej.2013.07.045 CrossRefGoogle Scholar
  35. Zhang M, Yang Ch, Zhao M, Yang K, Shen R, Zheng Y (2017) Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes. J Hazard Mater 321:281–289. doi: 10.1016/j.jhazmat.2016.09.019 CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2017

Authors and Affiliations

  • L. Bláhová
    • 1
  • Z. Navrátilová
    • 1
  • M. Mucha
    • 1
  • E. Navrátilová
    • 2
  • V. Neděla
    • 2
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of OstravaOstravaCzech Republic
  2. 2.Institute of Scientific Instruments of CAS, v.v.i.BrnoCzech Republic

Personalised recommendations