Skip to main content
Log in

Synthesis of rare earth-doped yttrium vanadate polyscale crystals and their enhanced photocatalytic degradation of aqueous dye solution

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a series of RE3+:YVO4 catalysts were successful synthesized by environmentally friendly mild hydrothermal and supercritical hydrothermal techniques. The rare earth-doped YVO4 photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy. The X-ray diffraction analysis reveals that the as-prepared YVO4 crystals are of tetragonal phase. Further, the Fourier transform infrared spectroscopy result shows the absence of OH– molecules. The photoluminescence spectroscopy curves and UV–Vis spectra suggest that the band gap energy of YVO4 is shifted to lower energy level due to doping of Nd3+ and Er3+ ions. The catalytic activities of the as-prepared RE3+:YVO4 samples were tested for the photodegradation of amaranth aqueous dye solution under sunlight irradiation. Remarkably, the rare earth-doped YVO4 nanocrystal sample showed outstanding photocatalytic degradation activities than undoped YVO4 nanocrystal sample with good reusability. Under full spectrum irradiation, the as-prepared Nd3+-doped YVO4 nanocrystals exhibited about 83% degradation efficiency. The apparent rate constant k for as-prepared Nd3+-doped YVO4 nanocrystals with 50 mg of photocatalyst exhibits highest k value (0.32 min−1), which is 2.9% higher than pure YVO4 nanocrystals (0.11 min−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ai ZH, Zhang LZ, Lee SC (2010) Efficient visible-light photocatalytic oxidation of NO on aerosol flow-synthesized nanocrystalline InVO4 hollow microspheres. J Phys Chem C 114:18594–18600. doi:10.1021/jp106906s

    Article  CAS  Google Scholar 

  • Baglio JA, Sovers OJ (1971) Crystal structures of the rare-earth orthovanadates. J Solid State Chem 3:458–465. doi:10.1016/0022-4596(71)90085-5

    Article  CAS  Google Scholar 

  • Byrappa K, Chandrashekar CK, Basavalingu B, Lokanatharai KM, Ananda S, Yoshimura M (2007a) Growth, morphology and mechanism of rare earth vanadate crystals under mild hydrothermal conditions. J Cryst Growth 306:94–101. doi:10.1016/j.jcrysgro.2007.03.055

    Article  CAS  Google Scholar 

  • Byrappa K, Adschiri T (2007b) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166. doi:10.1016/j.pcrysgrow.2007.04.001

    Article  CAS  Google Scholar 

  • Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications. Adv Drug Deliv Rev 60:299–327. doi:10.1016/j.addr.2007.09.001

    Article  CAS  Google Scholar 

  • Chakoumakos BC, Abraham MM, Boatner LA (1994) Crystal structure refinements of zircon-type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu). J Solid State Chem 109:197–202. doi:10.1006/jssc.1994.1091

    Article  CAS  Google Scholar 

  • Chandrashekar CK, Basavalingu B, Lokanatharai KM, Ananda S, Tonthai T, Soga K, Byrappa K (2010) Novel method of synthesis of RE3+:YVO4 (where RE3+ = Nd, Er) crystals. Mater Res Innov 14:38–44. doi:10.1179/143307510X12599329342962

    Article  CAS  Google Scholar 

  • Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570. doi:10.1021/cr1001645

    Article  CAS  Google Scholar 

  • Cosovic AR, Zak T, Glisic SB, Sokic MD, Lazarevic SS, Cosovic VR, Orlovic AM (2016) Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol. J Super Fluids 113:96–105. doi:10.1016/j.supflu.2016.03.014

    Article  CAS  Google Scholar 

  • Deng YC, Tang L, Zeng GM, Zhu ZJ, Yan M, Zhou Y, Wang J, Liu Y, Wang J (2017) Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorous doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism. Appl Catal B 203:343–354. doi:10.1016/j.apcatb.2016.10.046

    Article  CAS  Google Scholar 

  • Girish HN, Shao GQ, Basavalingu B (2016) Well-monocrystallized LaCrO3 particles from a LaCrO4 precursor by supercritical hydrothermal technique. RSC Adv 6:79763–79767. doi:10.1039/C6RA15354B

    Article  CAS  Google Scholar 

  • Hou Z, Yang PP, Li CX, Wang L, Lian HZ, Quan ZW, Lin J (2008) Preparation and luminescence properties of YVO4:Ln and Y(V, P)O4:Ln (Ln = Eu3+, Sm3+, Dy3+) nanofibers and microbelts by sol–gel/electrospinning process. Chem Mater 20:6686–6696. doi:10.1021/cm801538t

    Article  CAS  Google Scholar 

  • Huignard A, Buissette V, Franville AC, Gacoin T, Boilot JP (2003) Emission processes in YVO4:Eu nanoparticles. J Phys Chem B 107(28):6754–6759. doi:10.1021/jp0342226

    Article  CAS  Google Scholar 

  • LeDuc CA, Campbell JM, Rossin JA (1996) Effect of lanthana as a stabilizing agent in titanium dioxide support. Ind Eng Chem Res 35:2473–2476. doi:10.1021/ie960112s

    Article  CAS  Google Scholar 

  • Li HJ, Zhou Y, Tu WG, Ye JH, Zou ZG (2015a) State-of-the-art progress in diverse heterostructured photocatalysts towards promoting photocatalytic performance. Adv Funct Mater 25:998–1013. doi:10.1002/adfm.201401636

    Article  CAS  Google Scholar 

  • Li L, Zou L, Wang H, Wang X (2015b) Converting Y(OH)3 nanofiber bundles to YVO4 polyhedrons for photodegradation of dye contaminants. Mater Res Bull 68:276–282. doi:10.1016/j.materresbull.2015.04.003

    Article  Google Scholar 

  • Lv XM, Wang JX, Yan ZX, Jiang DL, Liu J (2015) Design of 3D h-BN architecture as Ag3VO4 enhanced photocatalysis stabilizer and promoter. J Mol Catal A Chem 418–419:146–153. doi:10.1016/j.molcata.2016.03.036

    Google Scholar 

  • Madhusudan P, Kumar MV, Ishigaki T, Toda K, Uematsu K, Sato M (2013) Hydrothermal synthesis of meso/macroporous BiVO4 hierarchical particles and their photocatalytic degradation properties under visible light irradiation. Environ Sci Pollut Res 20:6638–6645. doi:10.1007/s11356-013-1694-x

    Article  CAS  Google Scholar 

  • Obregón S, Colón G (2015) Water splitting performance of Er3+-doped YVO4 prepared from a layered K3V5O14 precursor. Chem Eng J 262:29–33. doi:10.1016/j.cej.2014.09.073

    Article  Google Scholar 

  • Pan GH, Song HW, Bai X, Liu ZX, Yu HQ, Di WH, Li SW, Fan L, Ren XG, Lu SZ (2006) Novel energy-transfer route and enhanced luminescent properties in YVO4:Eu3+/YBO3:Eu3+ composite. Chem Mater 18:4526–4532. doi:10.1021/cm061077a

    Article  CAS  Google Scholar 

  • Parhi P, Manivannan V (2008) Novel microwave initiated solid-state metathesis synthesis and characterization of lanthanide phosphates and vanadates, LMO4 (L = Y, La and M = V, P). Solid State Sci 10:1012–1019. doi:10.1016/j.solidstatesciences.2007.11.038

    Article  CAS  Google Scholar 

  • Ran R, McEvoy JG, Zhang ZS (2016) Ag2O/Ag3VO4/Ag4V2O7 heterogeneous photocatalyst prepared by a facile hydrothermal synthesis with enhanced photocatalytic performance under visible light irradiation. Mater Res Bull 74:140–150. doi:10.1016/j.materresbull.2015.08.028

    Article  CAS  Google Scholar 

  • Shiraishi Y, Takeshita S, Isobe T (2015) Two photoenergy conversion modes of YVO4:Eu3+ nanoparticles: photoluminescence and photocatalytic activity. J Phys Chem C 119:13502–13508. doi:10.1021/acs.jpcc.5b03425

    Article  CAS  Google Scholar 

  • Sudrajat H, Babel S (2016) Rapid photocatalytic degradation of the recalcitrant dye amaranth by highly active N-WO3. Environ Chem Lett 14:243–249. doi:10.1007/s10311-015-0538-y

    Article  CAS  Google Scholar 

  • Sun LD, Zhang YX, Zhang J, Yan CH, Liao CS, Lu YQ (2002) Fabrication of size controllable YVO4 nanoparticles via microemulsion-mediated synthetic process. Solid State Commun 124:35–38. doi:10.1016/S0038-1098(02)00449-0

    Article  CAS  Google Scholar 

  • Sun YJ, Liu HJ, Wang X, Kong XG, Zhang H (2006) Optical spectroscopy and visible upconversion studies of YVO4:Er3+ nanocrystals synthesized by a hydrothermal process. Chem Mater 18:2726–2732. doi:10.1021/cm051971m

    Article  CAS  Google Scholar 

  • Tang L, Wang J, Zeng GM, Liu Y, Deng YC, Zhou YY, Tang J, Wang JJ, Guo Z (2016) Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. J Hazard Mater 306:295–304. doi:10.1016/j.jhazmat.2015.12.044

    Article  CAS  Google Scholar 

  • Vinod KG, Rajeev J, Alok M, Tawfik AS, Arunima N, Shilpi A, Shalini S (2012) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17. doi:10.1016/j.msec.2011.08.018

    Article  Google Scholar 

  • Wang DF, Tang JW, Zou ZG, Ye JH (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem Mater 17:5177–5182. doi:10.1021/cm051016x

    Article  CAS  Google Scholar 

  • Wang YF, Wang S, Wu ZL, Li WR, Ruan YF (2013) Photoluminescence properties of Ce and Eu co-doped YVO4 crystals. J Alloys Compd 551:262–266. doi:10.1016/j.jallcom.2012.10.042

    Article  CAS  Google Scholar 

  • Wang ZY, Liu YY, Huang BB, Dai Y, Lou ZZ, Wang G, Zhang XY, Qin XY (2014) Progress on extending the light absorption spectra of photocatalysts. Phys Chem Chem Phys 16:2758–2774. doi:10.1039/C3CP53817F

    Article  CAS  Google Scholar 

  • Wang H, Yuan XZ, Wu Y, Zeng GM, Chen XH, Leng L, Li X (2015a) Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl Catal B 174–175:445–454. doi:10.1016/j.apcatb.2015.03.037

    Article  Google Scholar 

  • Wang H, Yuan XZ, Yan Wu, Chen X, Leng L, Zeng GM (2015b) Photodeposition of metal sulfides on titanium metal-organic frameworks for excellent visible-light-driven photocatalytic Cr(VI) reduction. RSC Adv 5:32531–32535. doi:10.1039/C5RA01283J

    Article  CAS  Google Scholar 

  • Waritanant T, Major A (2016) High efficiency passively mode-locked Nd:YVO4 laser with direct in-band pumping at 914 nm. Opt Express 24:12851–12855. doi:10.1364/CLEO_SI.2016.SM4M.2

    Article  CAS  Google Scholar 

  • Wu H, Xu HF, Su Q, Chen TH, Wu M (2003) Size-and shape-tailored hydrothermal synthesis of YVO4 crystals in ultra-wide pH range conditions. J Mater Chem 13:1223–1228. doi:10.1039/B210713A

    Article  CAS  Google Scholar 

  • Xu W, Wang Y, Bai X, Bong B, Liu Q, Chen JS, Song HW (2010a) Controllable synthesis and size-dependent luminescent properties of YVO4:Eu3+ nanospheres and microspheres. J Phys Chem C 114:14018–14024. doi:10.1021/jp1048666

    Article  CAS  Google Scholar 

  • Xu ZH, Kang XJ, Li CX, Hou ZY, Zhang C, Yang DM, Li G, Lin J (2010b) Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growth mechanism, and luminescent properties. Inorg Chem 49:6706–6715. doi:10.1021/ic100953m

    Article  CAS  Google Scholar 

  • Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography. Chem Mater 14:2224–2231. doi:10.1021/cm011663y

    Article  CAS  Google Scholar 

  • Yuan XZ, Wang H, Yan Wu, Chen XH, Zeng GM, Leng L, Zhang C (2015) A novel SnS2–MgFe2O4/reduced graphene oxide flower-like photocatalyst: solvothermal synthesis, characterization and improved visible-light photocatalytic activity. Catal Commun 61:62–66. doi:10.1016/j.catcom.2014.12.003

    Article  CAS  Google Scholar 

  • Yuan XZ, Wang H, Wu Y, Zeng GM, Chen XH, Leng L, Wu Z, Li H (2016) One-pot assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-123 (Ti) photocatalyst with improved visible light photocatalytic activity. Appl Organometal Chem 30:289–296. doi:10.1002/aoc.3430

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support for this work provided by the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Madhusudan.

Additional information

Editorial responsibility: Binbin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrashekar, C.K., Madhusudan, P., Shivaraju, H.P. et al. Synthesis of rare earth-doped yttrium vanadate polyscale crystals and their enhanced photocatalytic degradation of aqueous dye solution. Int. J. Environ. Sci. Technol. 15, 427–440 (2018). https://doi.org/10.1007/s13762-017-1401-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1401-4

Keywords

Navigation