Skip to main content

A review on mechanism and future perspectives of cadmium-resistant bacteria

Abstract

Since the last few decades, cadmium anthropocentric sources have been increased drastically. Various chemical and physical approaches for cadmium remediation have been proposed, but these techniques are quite expensive, not healthy for the environment and not efficient at the low concentration of cadmium. Thus, in the last few years, the cadmium removal by biological approaches has received a great interest. Many bacteria can resist against high concentration of cadmium through different mechanisms. The cadmium-resistant bacteria can be grouped into three levels. The main group consists of bacteria which efflux the cadmium from the cells. The bacteria of the other two groups are capable of detoxifying or binding cadmium. The cadA and cadB gene systems are involved in efflux mechanism, and these encode different efflux pump proteins, while the functional groups such as amine, carboxyl, phosphate and hydroxyl facilitate cadmium binding to bacterial surface such as chemisorption. Many enzymes are involved in the detoxifying the cadmium and make the membrane impermeable against cadmium. This paper also reviews the industrial application of cadmium-resistant bacteria and the future perspectives of genetic engineering, bioelectrochemical system, microbial aggregates and biosorption of cadmium by algae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abbas SZ, Rafatullah M, Ismail N, Lalung J (2014a) Isolation, identification, and characterization of cadmium resistant Pseudomonas sp. M3 from industrial wastewater. J Waste Manag 2014:1–6

    Article  CAS  Google Scholar 

  • Abbas SZ, Rafatullah M, Ismail N, Lalung J (2014b) Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species. J Basic Microbiol 54:1279–1287

    CAS  Article  Google Scholar 

  • Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M (2014c) Isolation and characterization of arsenic resistant bacteria from wastewater. Braz J Microbiol 45:1309–1315

    CAS  Article  Google Scholar 

  • Abbas SZ, Rafatullah M, Ismail N, Lalung J (2015) Isolation and characterization of Cd-resistant bacteria from industrial wastewater. Desalin Water Treat 56:1037–1046

    CAS  Article  Google Scholar 

  • Abbas SZ, Rafatullah M, Ismail N, Syakir MI (2017) A review on sediment microbial fuel cells as a new source of sustainable energy and heavy metal remediation: mechanisms and future prospective. Int J Energy Res. doi:10.1002/er.3706

    Google Scholar 

  • Abd-Alla MH, Morsy FM, El-Enany A-WE, Ohyama T (2012) Isolation and characterization of a heavy-metal-resistant isolate of Rhizobium leguminosarum bv. viciae potentially applicable for biosorption of Cd2+ and Co2+. Int Biodeterior Biodegrad 67:48–55

    CAS  Article  Google Scholar 

  • Abyar H, Safahieh A, Zolgharnein H, Zamani I (2012) Isolation and identification of Achromobacter denitrificans and evaluation of its capacity in cadmium removal. Pol J Environ Stud 21:1523–1527

    CAS  Google Scholar 

  • Adriano DC (2013) Trace elements in the terrestrial environment. Springer, Berlin

    Google Scholar 

  • Ali N, Hameed A, Ahmed S (2009) Physicochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. J Hazard Mater 164:322–328

    CAS  Article  Google Scholar 

  • Alnaseri H, Arsic B, Schneider JE, Kaiser JC, Scinocca ZC, Heinrichs DE, McGavin MJ (2015) Inducible expression of a resistance-nodulation-division-type efflux pump in Staphylococcus aureus provides resistance to linoleic and arachidonic acids. J Bacteriol 197:1893–1905

    CAS  Article  Google Scholar 

  • Andersen JL et al (2015) Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health 12:1487–1547

    CAS  Article  Google Scholar 

  • Australia’s submission (2005) Information about cadmium in Australia. Prepared by the Australian Government for the United Nations Environment Programme. Australia Government, 12

  • Bai H-J, Zhang Z-M, Yang G-E, Li B-Z (2008) Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. Bioresour Technol 99:7716–7722

    CAS  Article  Google Scholar 

  • Basha SA, Rajaganesh K (2014) Microbial bioremediation of heavy metals from textile industry dye effluents using isolated bacterial strains. Int J Curr Microbiol Appl Sci 3:785–794

    Google Scholar 

  • Bereza-Malcolm L, Aracic S, Franks AE (2016) Development and application of a synthetically-derived lead biosensor construct for use in gram-negative bacteria. Sensors 16:2174. doi:10.3390/s16122174

    Article  Google Scholar 

  • Bhakta J, Munekage Y, Ohnishi K, Jana B (2012) Isolation and identification of cadmium-and lead-resistant lactic acid bacteria for application as metal removing probiotic. Int J Environ Sci Technol 9:433–440

    CAS  Article  Google Scholar 

  • Bhakta JN, Munekage Y, Ohnishi K, Jana B, Balcazar J (2014) Isolation and characterization of cadmium-and arsenic-absorbing bacteria for bioremediation. Water Air Soil Pollut 225:1–10

    CAS  Article  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Article  Google Scholar 

  • Bramhachari P, Nagaraju GP (2017) Extracellular polysaccharide production by bacteria as a mechanism of toxic heavy metal biosorption and biosequestration in the marine environment. In: Marine pollution and microbial remediation. Springer, Berlin, pp 67–85

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    CAS  Article  Google Scholar 

  • Burkina Faso’s submission (2005) Contribution of Burkina Faso to the study on lead and cadmium. Semče Idrissa, Ministry of Environment and Life Quality

  • Cazón JP, Viera M, Donati E, Guibal E (2013) Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. J Environ Manag 129:423–434

    Article  CAS  Google Scholar 

  • Chakravarty R, Banerjee PC (2012) Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresour Technol 108:176–183

    CAS  Article  Google Scholar 

  • Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN (2014) Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 22:686–696

    CAS  Article  Google Scholar 

  • Chen M, Li Y, Zhang L, Wang J, Zheng C, Zhang X (2015) Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans. Curr Microbiol 70:290–297

    CAS  Article  Google Scholar 

  • Chien CC, Hung CW, Han CT (2007) Removal of cadmium ions during stationary growth phase by an extremely cadmium-resistant strain of Stenotrophomonas sp. Environ Toxicol Chem 26:664–668

    CAS  Article  Google Scholar 

  • Chovanová K et al (2004) Identification and characterization of eight cadmium resistant bacterial isolates from a cadmium-contaminated sewage sludge. Biologia 59:817–827

    Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM, de Sousa PA, Melo DF, Coelho NM (2015) Bioremediation of polluted waters using microorganisms. In: N Shiomi (ed) Agricultural and biological sciences. Advances in bioremediation of wastewater and polluted soil

  • Costa SS, Mourato C, Viveiros M, Melo-Cristino J, Amaral L, Couto I (2013) Description of plasmid pSM52, harbouring the gene for the Smr efflux pump, and its involvement in resistance to biocides in a meticillin-resistant Staphylococcus aureus strain. Int J Antimicrob Agents 41:490–492

    CAS  Article  Google Scholar 

  • Costley S, Wallis F (2001) Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Res 35:3715–3723

    CAS  Article  Google Scholar 

  • Darwish AM, Eisa WH, Shabaka AA, Talaat MH (2016) Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment. Spectrochim Acta A Mol Biomol Spectrosc 153:315–320

    CAS  Article  Google Scholar 

  • De J, Sarkar A, Ramaiah N (2006) Bioremediation of toxic substances by mercury resistant marine bacteria. Ecotoxicology 15:385–389

    CAS  Article  Google Scholar 

  • Deng X, Yi X, Liu G (2007) Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. J Hazard Mater 139:340–344

    CAS  Article  Google Scholar 

  • Divya B, Kumar MD (2011) Plant–microbe interaction with enhanced bioremediation research. J Biotechnol 6:72–79

    CAS  Google Scholar 

  • Dixit R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    CAS  Article  Google Scholar 

  • Du H, Chen W, Cai P, Rong X, Dai K, Peacock CL, Huang Q (2016) Cd(II) sorption on montmorillonite-humic acid-bacteria composites. Sci Rep 6:19499

    CAS  Article  Google Scholar 

  • El-Helow E, Sabry S, Amer R (2000) Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations. Biometals 13:273–280

    CAS  Article  Google Scholar 

  • ElMekawy A, Srikanth S, Bajracharya S, Hegab HM, Nigam PS, Singh A (2015) Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. Food Res Int 73:213–225

    CAS  Article  Google Scholar 

  • Filice FP, Li MS, Henderson JD, Ding Z (2016) Mapping Cd2+-induced membrane permeability changes of single live cells by means of scanning electrochemical microscopy. Anal Chim Acta. doi:10.1016/j.aca.2015.12.027

    Google Scholar 

  • Filipič M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res Fundam Mol Mech 733:69–77

    Article  CAS  Google Scholar 

  • Filipkowska U, Szymczyk P, Kuczajowska-Zadrożna M, Jóźwiak T (2015) Effect of conditions of air-lift type reactor work on cadmium adsorption. Korean J Chem Eng 32:2024–2030

    CAS  Article  Google Scholar 

  • Francis A, Nancharaiah Y (2015) In situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and NORM sites. In: Environmental remediation and restoration of contaminated nuclear and norm sites, p 185

  • Garg M, Mehrotra S (2017) Biosensors. In: Principles and applications of environmental biotechnology for a sustainable future. Springer, Berlin, pp 341–363

  • Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Process Impacts 16:180–193

    CAS  Article  Google Scholar 

  • Glazer A, Nikaido H (1995) Environmental applications microbial biotechnology: fundamentals of applied microbiology. WH Freeman and Company, New York, pp 561–614

    Google Scholar 

  • Goswami S, Syiem MB, Pakshirajan K (2015) Cadmium removal by Anabaena doliolum Ind1 isolated from a coal mining area in Meghalaya, India: associated structural and physiological alterations. Environ Eng Res 20:41–50

    Article  Google Scholar 

  • Green-Ruiz C, Rodriguez-Tirado V, Gomez-Gil B (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour Technol 99:3864–3870

    CAS  Article  Google Scholar 

  • Guo S, Yao Y, Zuo L, Shi W, Gao N, Xu H (2016) Enhancement of tolerance of Ganoderma lucidum to cadmium by nitric oxide. J Basic Microbiol 56:36–43

    CAS  Article  Google Scholar 

  • Herzberg M, Bauer L, Kirsten A, Nies DH (2016) Interplay between seven secondary metal uptake systems is required for full metal resistance of Cupriavidus metallidurans. Metallomics. doi:10.1039/C5MT00295H

    Google Scholar 

  • Huang F, Guo C-L, Lu G-N, Yi X-Y, Zhu L-D, Dang Z (2014) Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere 109:134–142

    CAS  Article  Google Scholar 

  • Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH (2014) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf 110:143–152

    CAS  Article  Google Scholar 

  • Jang S (2016) Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. J Microbiol 54:1–8

    CAS  Article  Google Scholar 

  • Kalkan E, Nadaroglu H, Dikbas N, Tasgin E, Çelebi N (2013) Bacteria-modified red mud for adsorption of cadmium ions from aqueous solutions. Pol J Environ Stud 22:105–117

    Google Scholar 

  • Kermani AJN, Ghasemi MF, Khosravan A, Farahmand A, Shakibaie M (2010) Cadmium bioremediation by metal-resistant mutated bacteria isolated from active sludge of industrial effluent. Iranian J Environ Health Sci Eng 7:279–286

    CAS  Google Scholar 

  • Kesler S, Simon A (2015) Mineral resources, economics and the environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Khadivinia E, Sharafi H, Hadi F, Zahiri HS, Modiri S, Tohidi A (2014) Cadmium biosorption by a glyphosate-degrading bacterium, a novel biosorbent isolated from pesticide-contaminated agricultural soils. J Ind Eng Chem 20:4304–4310

    CAS  Article  Google Scholar 

  • Khan Z, Nisar MA, Hussain SZ, Arshad MN, Rehman A (2015) Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl Microbiol Biotechnol 99:10745–10757

    CAS  Article  Google Scholar 

  • Kim SY, Jin MR, Chung CH, Yun Y-S, Jahng KY, Yu K-Y (2015) Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain. J Biosci Bioeng 119:433–439

    CAS  Article  Google Scholar 

  • Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgae—a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  CAS  Google Scholar 

  • Lewis VG, Ween MP, McDevitt CA (2012) The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma 249:919–942

    CAS  Article  Google Scholar 

  • Li Z, Yuan H (2006) Characterization of cadmium removal by Rhodotorula sp. Y11. Appl Microbiol Biotechnol 73:458–463

    CAS  Article  Google Scholar 

  • Limcharoensuk T, Sooksawat N, Sumarnrote A, Awutpet T, Kruatrachue M, Pokethitiyook P, Auesukaree C (2015) Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicol Environ Saf 122:322–330

    CAS  Article  Google Scholar 

  • Lu W-B, Shi J-J, Wang C-H, Chang J-S (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86

    CAS  Article  Google Scholar 

  • Luo S, Xiao X, Xi Q, Wan Y, Chen L, Zeng G, Chen J (2011) Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP). J Hazard Mater 190:1079–1082

    CAS  Article  Google Scholar 

  • Mahmoudkhani R, Torabian A, Hassani AH, Mahmoudkhani R (2014) Copper, cadmium and ferrous removal by membrane bioreactor. APCBEE Procedia 10:79–83

    CAS  Article  Google Scholar 

  • Mahvi A, Diels L (2004) Biological removal of cadmium by Alcaligenes eutrophus CH34. Int J Environ Sci Technol 1:199–204

    CAS  Article  Google Scholar 

  • Malakahmad A, Hasani A, Eisakhani M, Isa MH (2011) Sequencing Batch Reactor (SBR) for the removal of Hg2+ and Cd2+ from synthetic petrochemical factory wastewater. J Hazard Mater 191:118–125

    CAS  Article  Google Scholar 

  • Malekzadeh R, Shahpiri A (2017) Independent metal-thiolate cluster formation in C-terminal Cys-rich region of a rice type 1 metallothionein isoform. Int J Biol Macromol 96:436–441

    CAS  Article  Google Scholar 

  • Martin R, Dowling K, Pearce D, Sillitoe J, Florentine S (2014) Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences 4:128–175

    Article  Google Scholar 

  • Masoudzadeh N, Zakeri F, Bagheri LT, Sharafi H, Masoomi F, Zahiri HS et al (2011) Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. J Hazard Mater 197:190–198

    CAS  Article  Google Scholar 

  • Massadeh AM, Al-Momani FA, Haddad HI (2005) Removal of lead and cadmium by halophilic bacteria isolated from the Dead Sea shore, Jordan. Biol Trace Elem Res 108:259–269

    CAS  Article  Google Scholar 

  • Mathivanan K, Rajaram R (2014) Tolerance and biosorption of cadmium(II) ions by highly cadmium resistant bacteria isolated from industrially polluted estuarine environment. Indian J Geomarine Sci 43:580–588

    Google Scholar 

  • Medircio SN, Leao VA, Teixeira MC (2007) Specific growth rate of sulfate reducing bacteria in the presence of manganese and cadmium. J Hazard Mater 143:593–596

    CAS  Article  Google Scholar 

  • Mexico’s submission (2005) Information on sources of exposure to lead and cadmium in Mexico. Federal Commission for the Protection against Sanitary Risk. Health protection

  • Moberly JG, Staven A, Sani RK, Peyton BM (2010) Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. Environ Science Technol 44:7302–7308

    CAS  Article  Google Scholar 

  • Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78:6397–6404

    CAS  Article  Google Scholar 

  • Mori T, Iwamoto K, Wakaoji S, Araie H, Kohara Y, Okamura Y et al (2016) Characterization of a novel gene involved in cadmium accumulation screened from sponge-associated bacterial metagenome. Gene 576:618–625

    CAS  Article  Google Scholar 

  • Moselhy K, Shaaban MT, Ibrahim HA, Abdel-Mongy AS (2013) Biosorption of cadmium by the multiple-metal resistant marine bacterium Alteromonas macleodii ASC1 isolated from Hurghada harbour, Red Sea. Arch Sci 66:259–272

    Google Scholar 

  • Mota R, Pereira SB, Meazzini M, Fernandes R, Santos A, Evans CA (2015) Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J Proteomics 120:75–94

    CAS  Article  Google Scholar 

  • Mustapha MU, Halimoon N (2015) Screening and isolation of heavy metal tolerant bacteria in industrial effluent. Procedia Environ Sci 30:33–37

    CAS  Article  Google Scholar 

  • Naik MM, Dubey S (2017) Lead-and mercury-resistant marine bacteria and their application in lead and mercury bioremediation. In: Marine pollution and microbial remediation. Springer, Berlin, pp 29–40

  • Nancharaiah Y, Mohan SV, Lens P (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114

    CAS  Article  Google Scholar 

  • Narayani M, Shetty KV (2013) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43:955–1009

    CAS  Article  Google Scholar 

  • NFA (2002): Riskiraportti: Elintarvikkeiden ja talousveden kemialliset vaarat. [Risk Report: chemical hazards of food and drinking water]. National Food Agency, Valvontaopas-sarja 2/2002, Helsinki, Finland (in Finnish)

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    CAS  Article  Google Scholar 

  • Ozdemir G, Ceyhan N, Ozturk T, Akirmak F, Cosar T (2004) Biosorption of chromium(VI), cadmium(II) and copper(II) by Pantoea sp. TEM18. Chem Eng J 102:249–253

    CAS  Article  Google Scholar 

  • Özdemir S, Kilinc E, Nicolaus B, Poli A (2013) Resistance and bioaccumulation of Cd2+, Cu2+, Co2+ and Mn2+ by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus. Ann Microbiol 63:1379–1385

    Article  CAS  Google Scholar 

  • Pandey S, Saha P, Barai PK, Maiti TK (2010) Characterization of a Cd2+-resistant strain of Ochrobactrum sp. isolated from slag disposal site of an iron and steel factory. Curr Microbiol 61:106–111

    CAS  Article  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32

    CAS  Article  Google Scholar 

  • Patel J, Zhang Q, McKay RML, Vincent R, Xu Z (2010) Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl Biochem Biotechnol 160:232–243

    CAS  Article  Google Scholar 

  • Pavić A, Ilić-Tomić T, Pačevski A, Nedeljković T, Vasiljević B, Morić I (2015) Diversity and biodeteriorative potential of bacterial isolates from deteriorated modern combined-technique canvas painting. Int Biodeterior Biodegrad 97:40–50

    Article  CAS  Google Scholar 

  • Pérez PL, López RA, González MN (2015) Cadmium removal at high concentration in aqueous medium: mediated by Desulfovibrio alaskensis International. J Environ Sci Technol 12:1975–1986

    Article  CAS  Google Scholar 

  • Priyalaxmi R, Murugan A, Raja P, Raj KD (2014) Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. Int J Curr Microbiol Appl Sci 3:326–335

    Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4:1

    Article  CAS  Google Scholar 

  • Raj R, Dalei K, Chakraborty J, Das S (2016) Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 462:166–175

    CAS  Article  Google Scholar 

  • Rajesh V, Kumar ASK, Rajesh N (2014) Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chem Eng J 235:176–185

    Article  CAS  Google Scholar 

  • Richardson GM, Garrett R, Mitchell I, Mah-Poulson M, Hackbarth T (2001) Critical review on natural global and regional emissions of six trace metals to the atmosphere. Prepared for the International Lead Zinc Research Organisation, the International Copper Association, and the Nickel Producers Environmental Research Association

  • Sabdono A (2011) Cadmium removal by a bioreducpiun coral bacterium Pseudoalteromonas sp. strain cd15 isolated from the tissue of coral Goniastrea aspera, Jepara waters. J Coast Dev 13:81–91

    Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    CAS  Article  Google Scholar 

  • Saeed A, Iqbal M (2003) Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res 37:3472–3480

    CAS  Article  Google Scholar 

  • Sangthong C, Duangboobpha S, Prapagdee B (2015) Cadmium removal from water and soil by a cadmium-resistant Rhizobacterium and its effect on plant root elongation. Environ Asia 8:94–100

    Google Scholar 

  • Sarin C, Sarin S (2010) Removal of cadmium and zinc from soil using immobilized cell of biosurfactant producing bacteria. Environ Asia 3:49–53

    Google Scholar 

  • Schindler BD, Frempong-Manso E, DeMarco CE, Kosmidis C, Matta V, Seo SM, Kaatz GW (2015) Analyses of multidrug efflux pump-like proteins encoded on the Staphylococcus aureus chromosome. Antimicrob Agents Chemother 59:747–748

    Article  CAS  Google Scholar 

  • Shaaban MT, Ibrahim HA, Abouhend AS, El-Moselhy KM (2015) Removal of heavy metals from aqueous solutions using multi-metals and antibiotics resistant bacterium isolated from the Red Sea, Egypt. Am J Microbiol Res 3:93–106

    CAS  Google Scholar 

  • Shamim S, Rehman A (2015) Antioxidative enzyme profiling and biosorption ability of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress. J Basic Microbiol 55:374–381

    CAS  Article  Google Scholar 

  • Shim J, Kim J-W, Shea PJ, Oh B-T (2015) Biosorption of cadmium by Citrobacter sp. JH 11-2 isolated from mining site soil. Sep Sci Technol 50(14):2134–2141

    CAS  Google Scholar 

  • Shirdam R, Khanafari A, Tabatabaee A (2006) Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iran J Biotechnol 4:180–187

    CAS  Google Scholar 

  • Singh N, Gadi R (2012) Bioremediation of Ni(II) and Cu(II) from wastewater by the nonliving biomass of Brevundimonas vesicularis. J Environ Chem Ecotoxicol 4:137–142

    CAS  Article  Google Scholar 

  • Singh JS, Abhilash P, Singh H, Singh RP, Singh D (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    CAS  Article  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    CAS  Article  Google Scholar 

  • Siripornadulsil S, Siripornadulsil W (2013) Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol Environ Saf 94:94–103

    CAS  Article  Google Scholar 

  • Stanbrough R, Chuaboonmee S, Palombo EA, Malherbe F, Bhave M (2013) Heavy metal phytoremediation potential of a heavy metal resistant soil bacterial isolate, Achromobacter sp. strain AO22. APCBEE Procedia 5:502–507

    CAS  Article  Google Scholar 

  • Sulaymon AH, Mohammed AA, Al-Musawi TJ (2013) Column biosorption of lead, cadmium, copper, and arsenic ions onto algae. J Bioprocess Biotech 3:1–7

    Article  CAS  Google Scholar 

  • Tsuruta T, Umenai D, Hatano T, Hirajima T, Sasaki K (2014) Screening micro-organisms for cadmium absorption from aqueous solution and cadmium absorption properties of Arthrobacter nicotianae. Biosci Biotechnol Biochem 78:1791–1796

    CAS  Article  Google Scholar 

  • Valls M, De Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    CAS  Article  Google Scholar 

  • Vanoort R, Cressey P, Silvers K (2000) 1997/98 New Zealand Total Diet Survey. Part 2: Elements. Report prepared for the Ministry of Health

  • Varghese R (2012) Bioaccumulation of cadmium by Pseudomonas sp. isolated from metal polluted industrial region. Environ Res Eng Manag 61:58–64

    Article  Google Scholar 

  • Vinod V, Sashidhar R (2011) Bioremediation of industrial toxic metals with gum kondagogu (Cochlospermum gossypium): a natural carbohydrate biopolymer. Indian J Biotechnol 10:113–120

    CAS  Google Scholar 

  • Vipra A, Desai SN, Junjappa RP, Roy P, Poonacha N, Ravinder P, Sriram B, Padmanabhan S (2013) Determining the minimum inhibitory concentration of bacteriophages: potential advantages. Adv Microbiol 3:181–190

    Article  Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramírez SA, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99:5574–5581

    CAS  Article  Google Scholar 

  • Wang X, Jin B (2009) Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J Biosci Bioeng 107:138–144

    CAS  Article  Google Scholar 

  • Wassenaar T, Ussery D, Nielsen L, Ingmer H (2015) Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol 5:44–61

    Article  Google Scholar 

  • Wheaton G, Counts J, Mukherjee A, Kruh J, Kelly R (2015) The confluence of heavy metal biooxidation and heavy metal resistance: implications for bioleaching by extreme thermoacidophiles. Minerals 5:397–451

    Article  Google Scholar 

  • WHO (2004) Cadmium (addendum). WHO Food Additives Series: 52. First draft. World Health Organisation, Geneva, Switzerland

  • WHO and UNICEF (2015) Progress on drinking water and sanitation-2014 update. 20 Avenue Appia, 1211 Geneva 27, Switzerland

  • Wu Y, He J, Yang L (2010) Evaluating adsorption and biodegradation mechanisms during the removal of microcystin-RR by periphyton. Environ Sci Technol 44:6319–6324

    CAS  Article  Google Scholar 

  • Wu Y, Hu Z, Yang L, Graham B, Kerr PG (2011) The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresour Technol 102:2419–2426

    CAS  Article  Google Scholar 

  • Wu Y, Li T, Yang L (2012) Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: a review. Bioresour Technol 107:10–18

    CAS  Article  Google Scholar 

  • Wu G, Sun M, Liu P, Zhang X, Yu Z, Zheng Z et al (2014) Enterococcus faecalis strain LZ-11 isolated from Lanzhou reach of the Yellow River is able to resist and absorb cadmium. J Appl Microbiol 116:1172–1180

    CAS  Article  Google Scholar 

  • Xia L, Yin C, Cai L, Qiu G, Qin W, Peng B, Liu J (2010) Metabolic changes of Acidithiobacillus caldus under Cu2+ stress. J Basic Microbiol 50:591–598

    CAS  Article  Google Scholar 

  • Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38:151–159

    CAS  Article  Google Scholar 

  • Yilmaz EI, Ensari N (2005) Cadmium biosorption by Bacillus circulans strain EB1. World J Microbiol Biotechnol 21:777–779

    CAS  Article  Google Scholar 

  • Zeid AAA, Hassanein WA, Salama HM, Fahd GA (2009) Biosorption of some heavy metal ions using bacterial species isolated from agriculture waste water drains in Egypt. J Appl Sci Res 5:372–383

    Google Scholar 

  • Zeng X-X, Tang J-X, Liu X-D, Jiang P (2009) Isolation, identification and characterization of cadmium-resistant Pseudomonas aeruginosa strain E1. J Cent South Univ Technol 16:416–421

    CAS  Article  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831

    CAS  Article  Google Scholar 

  • Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H, Van der Wel NN et al (2016) The Bacillus subtilis spore inner membrane proteome. J Proteome Res. doi:10.1021/acs.jproteome.5b00976

    Google Scholar 

  • Zhou W, Ma Y, Zhou J, Zhang Y (2013) Bio-removal of cadmium by growing deep-sea bacterium Pseudoalteromonas sp. SCSE709-6. Extremophiles 17:723–731

    CAS  Article  Google Scholar 

  • Zhu N, Zhang L, Li C, Cai C (2003) Recycling of spent nickel–cadmium batteries based on bioleaching process. Waste Manag 23:703–708

    CAS  Article  Google Scholar 

  • Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Tzannetaki EL, Liakopoulou-Kyriakides M (2007) Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Technol 98:2859–2865

    CAS  Article  Google Scholar 

  • Zouboulis A, Loukidou M, Matis K (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Universiti Sains Malaysia Global Fellowship (USMGF/FC/04/2015) for the support and research facilities for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rafatullah.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbas, S.Z., Rafatullah, M., Hossain, K. et al. A review on mechanism and future perspectives of cadmium-resistant bacteria. Int. J. Environ. Sci. Technol. 15, 243–262 (2018). https://doi.org/10.1007/s13762-017-1400-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1400-5

Keywords

  • Binding sites
  • Bioreactors
  • Cadmium
  • Efflux pumps
  • Enzymatic detoxification
  • Plasmid genes