Skip to main content
Log in

Atomic layer deposition surface functionalized biochar for adsorption of organic pollutants: improved hydrophilia and adsorption capacity

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Atomic layer deposition (ALD) thin film coating was applied to improve the hydrophilia of biochar derived from black willow. 2 (2Al, 0.82 wt% Al2O3), 5 (5Al, 1.40 wt% Al2O3), and 10 (10Al, 2.36 wt% Al2O3) cycles of alumina ALD were applied. The biochars were characterized by inductively coupled plasma–atomic emission spectroscopy, nitrogen adsorption and desorption, scanning electron microscopy, and Fourier transform infrared spectroscopy. The adsorbents were utilized for the removal of methylene blue (MB) from an aqueous solution to evaluate their adsorption capacities. The 5Al biochar showed the highest adsorption capacity, compared to the uncoated biochar and other Al2O3 coated biochars, due to its improved hydrophilia. The amount of MB adsorbed onto the 5Al biochar was almost three times that adsorbed onto the uncoated biochar during the first hour of adsorption experiments. Adsorption isotherms were modeled with the Langmuir and Freundlich isotherms. The data fit well with the Langmuir isotherm, and the maximum adsorption capacities were found to be 26.8 and 35.0 mg/g at 25 °C for the uncoated biochar and 5Al biochar, respectively. The adsorbed MB amount per square meter achieved 1.3 mg/m2 onto the 5Al biochar, and it was twice the amount on the uncoated biochar. The experimental data were analyzed by pseudo-first-order and pseudo-second-order kinetics models of adsorption. The pseudo-second-order model better describes adsorption kinetic data for the uncoated biochar and 5Al biochar than the pseudo-first-order model does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bayan MR (2014) Prospects of biochar use in Missouri. Lincoln University Cooperative Extension and Research LUCER report #11-2014

  • Boutsika LG, Karapanagioti HK, Manariotis ID (2014) Aqueous mercury sorption by biochar from malt spent rootlets. Water Air Soil Pollut 225:1–10

    Article  CAS  Google Scholar 

  • Cheng G, Sun L, Jiao L, Peng L-x, Lei Z-h, Wang Y-x, Lin J (2013) Adsorption of methylene blue by residue biochar from copyrolysis of dewatered sewage sludge and pine sawdust. Desalin Water Treat 51:7081–7087

    Article  CAS  Google Scholar 

  • George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131. doi:10.1021/cr900056b

    Article  CAS  Google Scholar 

  • Gray M, Johnson MG, Dragila MI, Kleber M (2014) Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenergy 61:196–205

    Article  CAS  Google Scholar 

  • Gupta V, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. J Hazard Mater 186:891–901

    Article  CAS  Google Scholar 

  • Hamdaoui O (2006) Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J Hazard Mater 135:264–273

    Article  CAS  Google Scholar 

  • Hameed B, Ahmad A (2009) Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J Hazard Mater 164:870–875

    Article  CAS  Google Scholar 

  • Hameed B, Ahmad A, Latiff K (2007) Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigm 75:143–149

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng 76:822–827

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. doi:10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  • Kinney T, Masiello C, Dugan B, Hockaday W, Dean M, Zygourakis K, Barnes R (2012) Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 41:34–43

    Article  CAS  Google Scholar 

  • Kołodyńska D, Wnętrzak R, Leahy JJ, Hayes MHB, Kwapiński W, Hubicki Z (2012) Kinetic and adsorptive characterization of biochar in metal ions removal. Chem Eng J 197:295–305. doi:10.1016/j.cej.2012.05.025

    Article  Google Scholar 

  • Liang XH, Zhan G-D, King DM, McCormick JA, Zhang J, George SM, Weimer AW (2008) Alumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed reactor. Diam Relat Mater 17:185–189

    Article  CAS  Google Scholar 

  • Liang XH, King DM, Li P, George SM, Weimer AW (2009) Nanocoating hybrid polymer films on large quantities of cohesive nanoparticles by molecular layer deposition. AIChE J 55:1030–1039

    Article  CAS  Google Scholar 

  • Liu Y, Zhao X, Li J, Ma D, Han R (2012) Characterization of bio-char from pyrolysis of wheat straw and its evaluation on methylene blue adsorption. Desalin Water Treat 46:115–123

    Article  CAS  Google Scholar 

  • Mahmoud DK, Salleh MAM, Karim WAWA, Idris A, Abidin ZZ (2012) Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies. Chem Eng J 181–182:449–457. doi:10.1016/j.cej.2011.11.116

    Article  Google Scholar 

  • Oladoja N, Aboluwoye C, Oladimeji Y, Ashogbon A, Otemuyiwa I (2008) Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation. Desalination 227:190–203

    Article  CAS  Google Scholar 

  • Pelekani C, Snoeyink VL (2000) Competitive adsorption between atrazine and methylene blue on activated carbon: the importance of pore size distribution. Carbon 38:1423–1436

    Article  CAS  Google Scholar 

  • Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97:121301. doi:10.1063/1.1940727

    Article  Google Scholar 

  • Shang Z, Patel RL, Evanko BW, Liang XH (2013) Encapsulation of supported metal nanoparticles with an ultra-thin porous shell for size-selective reactions. Chem Commun 49:10067–10069. doi:10.1039/c3cc44208j

    Article  CAS  Google Scholar 

  • Shawabkeh RA, Tutunji MF (2003) Experimental study and modeling of basic dye sorption by diatomaceous clay. Appl Clay Sci 24:111–120. doi:10.1016/S0169-1317(03)00154-6

    Article  CAS  Google Scholar 

  • Shi L, Zhang G, Wei D, Yan T, Xue X, Shi S, Wei Q (2014) Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions. J Mol Liq 198:334–340

    Article  CAS  Google Scholar 

  • Sohi SP (2012) Carbon storage with benefits. Science 338:1034–1035

    Article  CAS  Google Scholar 

  • Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM (2006) Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf A 272:89–104

    Article  CAS  Google Scholar 

  • Sun L, Wan S, Luo W (2013) Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresour Technol 140:406–413

    Article  CAS  Google Scholar 

  • Tan I, Ahmad A, Hameed B (2009) Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater 164:473–482

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  • Wang X, Donovan AR, Patel RL, Shi H, Liang XH (2016) Adsorption of metal and metalloid ions onto nanoporous microparticles functionalized by atomic layer deposition. J Environ Chem Eng 4:3767–3774

    Article  CAS  Google Scholar 

  • Wank JR, George SM, Weimer AW (2001) Vibro-fluidization of fine boron nitride powder at low pressure. Powder Technol 121:195–204

    Article  CAS  Google Scholar 

  • Wank JR, George SM, Weimer AW (2004) Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD. Powder Technol 142:59–69

    Article  CAS  Google Scholar 

  • Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20:228–238

    Article  CAS  Google Scholar 

  • Xu R, Xiao S, Yuan J, Zhao A (2011) Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol 102:10293–10298. doi:10.1016/j.biortech.2011.08.089

    Article  CAS  Google Scholar 

  • Zhang M, Gao B (2013) Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem Eng J 226:286–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (Grant NSF CBET 1402122). The biochar production was supported by a grant from the United States Department of Agriculture (USDA), “Interactions of Biochar with 2:1 Pedogenic Phyllosilicates and the Potential of Biochar Application to Improve Soil Structure in Select Soils with Claypan or Argillic Horizon in Missouri” (Project No.: MOLUBayan-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Bayan, M.R., Yu, M. et al. Atomic layer deposition surface functionalized biochar for adsorption of organic pollutants: improved hydrophilia and adsorption capacity. Int. J. Environ. Sci. Technol. 14, 1825–1834 (2017). https://doi.org/10.1007/s13762-017-1300-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1300-8

Keywords

Navigation