Skip to main content

Biodegradation of cyanide and evaluation of kinetic models by immobilized cells of Serratia marcescens strain AQ07

Abstract

Immobilized form of Serratia marcescens strain AQ07 was experimented for cyanide biodegradation. Cyanide degradation (200 ppm) was achieved after 24-h incubation. Three parameters were optimized which included gellan gum concentration, beads size, and number of beads. In accordance with one-factor-at-a-time method, cyanide removal was optimum at 0.6% w/v gellan gum gel, 0.3-cm-diameter beads, and 50 beads number. It was able to withstand cyanide toxicity of 800 ppm, which makes it very suitable candidate in cyanide remediation. Beads reusability indicates one-cycle ability. The first cycle removed 96.3%, while the second removed 78.5%. Effects of heavy metals at 1.0 ppm demonstrated that mercury has a considerable effect on bacteria, inhibiting degradation to 61.6%, while other heavy metals have less effect, removing 97–98%. Maximum specific degradation rate of 0.9997 h−1 was observed at 200 ppm cyanide concentration. Gellan gum was used as the encapsulation matrix. ɤ-picoline-barbituric acid spectrophotometric analytical method was used to optimize the condition in buffer medium integrated with potassium cyanide via one-factor-at-a-time and response surface method. The range of cyanide concentrations used in this research, specific biodegradation rate was obtained to model the substrate inhibition kinetics. This rate fits to the kinetic models of Teisser, Aiba and Yano, which are utilized to elucidate substrate inhibition on degradation. One-factor-at-a-time approach parameters were adopted because it removes more cyanide compared to response surface methodology modules. The predicted biokinetic constant from this model suggests suitability of the bacteria for use in cyanide treatment of industrial waste effluents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aiba S, Shoda M, Nagatani M (1968) Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng 10: 845–864

    CAS  Article  Google Scholar 

  2. Ahmad SA, Shamaan NA, Arif NM, Koon GB, Shukor MY, Syed MA (2012) Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1. World J Microbiol Biotechnol 28(1):347–352

    CAS  Article  Google Scholar 

  3. Alzubaidy SK (2012) The resistance of locally isolated Serratia marcescens to heavy metals chlorides and optimization of some environmental factors. J Environ Occup Sci 1(1):37–42

    Article  Google Scholar 

  4. Ashtaputre AA, Shah AK (1995) Studies on a viscous, gel-forming exopolysaccharide from Sphingomonas paucimobilis GS1. Appl Environ Microbiol 61(3):1159–1162

    CAS  Google Scholar 

  5. Basheer S, Kut Ö, Prenosil JE, Bourne JR (1992) Kinetics of enzymatic degradation of cyanide. Biotechnol Bioeng 39(6):629–634

    CAS  Article  Google Scholar 

  6. Buitelaar RM, Hulst AC, Tramper J (1988) Immobilization of biocatalysts in thermogels using the resonance nozzle for rapid drop formation and an organic solvent for gelling. Biotechnol Tech 2(2):109–114

    CAS  Article  Google Scholar 

  7. Camelin I, Lacroix C, Paquin C, Prevost H, Cachon R, Divies C (1993) Effect of chelatants on gellan gum rheological properties and setting temperature for immobilization of living bifidobacteria. Biotechnol Prog 9(3):291–297

    CAS  Article  Google Scholar 

  8. Chen CY, Kao CM, Chen SC (2008) Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater. Chemosphere 71(1):133–139

    CAS  Article  Google Scholar 

  9. Chena S-C, Liu J-K (1999) The respiratory responses to cyanide of a cyanide-resistant Klebsiella oxytoca bacterial strain. FEMS Microbiol Lett 175(1):37–43

    CAS  Article  Google Scholar 

  10. Dey S, Mukherjee S (2010) Performance and kinetic evaluation of phenol biodegradation by mixed microbial culture in a batch reactor. Int J Water Resour Environ Eng 2(3):40–49

    Google Scholar 

  11. Dursun AY, Aksu Z (2000) Biodegradation kinetics of ferrous (II) cyanide complex ions by immobilized Pseudomonas fluorescens in a packed bed column reactor. Process Biochem 35(6):615–622

    CAS  Article  Google Scholar 

  12. Dursun AY, Tepe O (2005) Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J Hazard Mater 126(1):105–111

    CAS  Article  Google Scholar 

  13. Gurbuz F, Ciftci H, Akcil A (2009) Biodegradation of cyanide containing effluents by Scenedesmus obliquus. J Harzad Mater 162(1):74–79

    CAS  Article  Google Scholar 

  14. Idriss AA, Ahmad AK (2014) Concentration of selected heavy metals in water of the Juru River, Penang, Malaysia. Afr J Biotechnol 11(33):8234–8240

    Google Scholar 

  15. Karamba K, Syed M, Shukor M, Ahmad SA (2014) Effect of heavy metals on cyanide biodegradation by resting cells of Serratia marcescens strain AQ07. J Environ Microbiol Toxicol 2(2):17–20

    Google Scholar 

  16. Karamba KI, Shukor MY, Syed MA, Zulkharnain A, Adeela N, Yasid AK, Khalil KA, Ahmad SA (2015a) Isolation, screening and characterisation of cyanide-degrading Serratia marcescens strain AQ07. J Chem Pharm Sci 8(2):401–406

    Google Scholar 

  17. Karamba KI, Syed MA, Shukor MY, Ahmad SA (2015b) Biological remediation of cyanide: a review. Biotropia 22(2):151–163

    Google Scholar 

  18. Karamba KI, Ahmad SA, Zulkharnain A, Syed MA, Khalil KA, Shamaan NA, Dahalan FA, Shukor MY (2016) Optimisation of biodegradation conditions for cyanide removal by Serratia marcescens strain AQ07 using one-factor-at-a-time technique and response surface methodology. Rendiconti Lincei 27(3):533–545

    Article  Google Scholar 

  19. Kjeldsen P (1999) Behaviour of cyanides in soil and groundwater: a review. Water Air Soil Pollut 115(1–4):279–308

    CAS  Article  Google Scholar 

  20. Kuo W-C, Shu T-Y (2004) Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells. J Hazard Mater 113(1):147–155

    CAS  Article  Google Scholar 

  21. Lozinsky VI, Plieva FM (1998) Poly (vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme Microb Technol 23(3):227–242

    CAS  Article  Google Scholar 

  22. Maniyam MN, Sjahrir F, Ibrahim AL (2011) Biodegradation of Cyanide by Rhodococcus Strains Isolated in Malaysia. In: International conference on food biotechnology, vol 9. pp 21–25

  23. Moslemy P, Neufeld RJ, Millette D, Guiot SR (2003) Transport of gellan gum microbeads through sand: an experimental evaluation for encapsulated cell bioaugmentation. J Environ Manag 69(3):249–259

    Article  Google Scholar 

  24. Nagashima S (1977) Spectrophotometric determination of cyanide with ɤ-picoline-barbituric acid. Anal Chem Acta 91(2):303–306

    CAS  Article  Google Scholar 

  25. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    CAS  Article  Google Scholar 

  26. Nilsson K, Birnbaum S, Flygare S, Linse L, Schröder U, Jeppsson U, Larsson P-O, Mosbach K, Brodelius P (1983) A general method for the immobilization of cells with preserved viability. Eur J Appl Microbiol Biotechnol 17(6):319–326

    CAS  Article  Google Scholar 

  27. Norton S, Lacroix C (1990) Gellan gum gel as entrapment matrix for high temperature fermentation processes: a rheological study. Biotechnol Tech 4(5):351–356

    CAS  Google Scholar 

  28. Pandiyan S, Mahendradas D (2011) Application of bacteria to remove Ni (II) Ions from aqueous solution. Eur J Sci Res 52(3):345–358

    Google Scholar 

  29. Patil YB, Paknikar KM (2000) Development of a process for biodetoxification of metal cyanides from waste waters. Process Biochem 35(10):1139–1151

    CAS  Article  Google Scholar 

  30. Potivichayanon S, Kitleartpornpairoat R (2010) Biodegradation of cyanide by a novel cyanide-degrading bacterium. World Acad Sci Eng Technol 42:1362–1365

    Google Scholar 

  31. Roshan R, Gaur A, Balomajumder C (2009) Cyanide in industrial wastewaters and its removal: a review on biotreatment 163(1):1–11

    Google Scholar 

  32. Sanderson GR, Bell VL, Ortega D (1989) A comparison of Gellan gum, agar, K-carrageenan and algin. Cereal Foods World 34:991–998

    CAS  Google Scholar 

  33. Saravanan P, Pakshirajan K, Saha P (2009) Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source. J Hazard Mater 162(1):476–481

    CAS  Article  Google Scholar 

  34. Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179(1):9–19

    CAS  Article  Google Scholar 

  35. Suh Y, Park JM, Yang J (1994) Biodegradation of cyanide compounds by Pseudomonas fluorescens immobilized on zeolite. Enzyme Microb Technol 16(6):529–533

    CAS  Article  Google Scholar 

  36. Tessier G (1942) Growth of bacterial populations and the available substrate concentration. Review of Scientific Instruments 3208: 209–214

    Google Scholar 

  37. Wagner-Döbler I, Lünsdorf H, Lübbehüsen T, Von Canstein HF, Li Y (2000) Structure and species composition of mercury-reducing biofilms. Appl Environ Microbiol 66(10):4559–4563

    Article  Google Scholar 

  38. Yan J, Jianping W, Jing B, Daoquan W, Zongding H (2006) Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem Eng J 29(3):227–234

    CAS  Article  Google Scholar 

  39. Yanase H, Sakamoto A, Okamoto K, Kita K, Sato Y (2000) Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10. Appl Microbiol Biotechnol 53(3):328–334

    CAS  Article  Google Scholar 

  40. Yang PY, Su R, Kim SJ (2003) EMMC process for combined removal of organics, nitrogen and an odor producing substance. J Environ Manag 69(4):381–389

    CAS  Article  Google Scholar 

  41. Yano T, Koga S (1969) Dynamic behavior of the chemostat subject to substrate inhibition. Biotechnol Bioeng 11:139–153

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant from The Ministry of Science, Technology and Innovation (MOSTI) Grant No. 02-01-04-SF1473SF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Ahmad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Editorial responsibility: H.K. Pant.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karamba, K.I., Ahmad, S.A., Zulkharnain, A. et al. Biodegradation of cyanide and evaluation of kinetic models by immobilized cells of Serratia marcescens strain AQ07. Int. J. Environ. Sci. Technol. 14, 1945–1958 (2017). https://doi.org/10.1007/s13762-017-1287-1

Download citation

Keywords

  • Gellan gum
  • Immobilized
  • Kinetic models
  • Substrate inhibition