Skip to main content

Advertisement

Log in

Exploring the diverse potentials of Planococcus sp. TRC1 for the deconstruction of recalcitrant kraft lignin

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Kraft lignin (KL) is the chief contaminant which is responsible for dark coloration, toxicity and high chemical oxygen demand (COD) of paper pulp mill effluent. The present study investigated the diverse potentials of Planococcus sp. TRC1 in the biodegradation of KL. Preliminary evaluation indicated that the strain was able to grow on broad spectrum of lignin-derived compounds, decolorize lignin-mimicking dyes and catabolize substrates of ligninolytic enzymes. Response surface methodology (RSM) was executed to perform the optimization of different process parameters. The results displayed that Planococcus sp. TRC1 could completely utilize 100 mg L−1 of KL and 78% of 200 mg L−1 of KL as sole source of carbon with concurrent reduction in COD and color. The biokinetic details of KL biodegradation showed that the values of \(\mu^{*}\), µ max, \(q^{*}\) and q max were 0.018 h−1, 0.01 h−1, 0.023 g g−1 h−1 and 0.05 g g−1 h−1, respectively. UV–visible spectrophotometry, SEM and FTIR indicated the significant alterations in the surface morphology, functional groups and chromophores during the course of biodegradation. XRD revealed the emergence of peak signifying the formation of low molecular weight intermediates after bacterial treatment. Considering the environmental impact, bacterial-treated KL illustrated less phytotoxicity using Vigna radiata seed bioassay. These results suggested that Planococcus sp. TRC1 could be a promising strain for the degradation of KL in an ecofriendly way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

K S K i :

Substrate affinity constant and substrate inhibition constant applied to growth rate (mg L−1)

\(K_{S}^{\prime } , K_{i}^{\prime }\) :

Substrate affinity constant and substrate inhibition constant applied to specific degradation rate (mg L−1)

q :

Specific degradation rate (g g−1 h−1)

\(q^{*}\) :

Apparent specific degradation rate (g g−1 h−1)

q max :

Maximum specific degradation rate (g g−1 h−1)

S :

KL concentration (mg L−1)

S m :

KL concentration at which μ = μ max (mg L−1)

\(S_{m}^{\prime }\) :

KL concentration at which q = q max (mg L−1)

X 0 :

Initial biomass concentration (mg L−1)

X :

Bacterial biomass concentration (mg L−1)

μ :

Growth rate (h−1)

\(\mu^{*}\) :

Fitting parameter, apparent maximum growth rate (h−1)

μ max :

True maximum growth rate (h−1)

References

  • Addleman K, Dumonceaux T, Paice MG, Bourbonnais R, Archibald FS (1995) Production and characterization of Trametes versicolor mutants unable to bleach hardwood kraft pulp. Appl Environ Microbiol 61:3687–3694

    CAS  Google Scholar 

  • Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TDH (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst 6:815–821

    Article  CAS  Google Scholar 

  • Bandounas L, Pinkse M, de Winde JH, Ruijssenaars HJ (2013) Identification of a quinone dehydrogenase from a Bacillus sp. involved in the decolourization of the lignin-model dye, Azure B. New Biotechnol 30:196–204

    Article  CAS  Google Scholar 

  • Basak B, Bhunia B, Dutta S, Chakraborty S, Dey A (2014) Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5. Environ Sci Pollut Res 21:1444–1454

    Article  CAS  Google Scholar 

  • Brown ME, Chang MCY (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7

    Article  CAS  Google Scholar 

  • Casas A, Alonso MV, Oliet M, Rojo E, Rodrıguez F (2012) FTIR analysis of lignin regenerated from Pinus radiata and Eucalyptus globulus woods dissolved in imidazolium-based ionic liquids. J Chem Technol Biotechnol 87:472–480

    Article  CAS  Google Scholar 

  • Chai L, Chen Y, Tang C, Yang Z, Zheng Y, Shi Y (2014) Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl Microbiol Biotechnol 98:1907. doi:10.1007/s00253-013-5166-5

    Article  CAS  Google Scholar 

  • Chakar SF, Ragauskas JA (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod 20:131–141

    Article  CAS  Google Scholar 

  • Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterisation and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846

    Article  CAS  Google Scholar 

  • Chen Y, Chai L, Tang C, Yang Z, Zheng Y, Shi Y, Zhang H (2012) Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technol 123:682–685

    Article  CAS  Google Scholar 

  • Chityala S, Dhali D, Behera M, Dasguptamandal D (2012) Chromium (VI) tolerant bacterial species from Tannery Industrial Effluent, Kolkata, India, GenBank Accession No. HE663167

  • Christen P, Vega A, Casalot L, Simon G, Auria R (2012) Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2. Biochem Eng J 62:56–61

    Article  CAS  Google Scholar 

  • Das B, Mandal TK, Patra S (2016) Biodegradation of phenol by a novel diatom BD1IITG-kinetics and biochemical studies. Int J Environ Sci Technol 13:529. doi:10.1007/s13762-015-0857-3

    Article  CAS  Google Scholar 

  • Engelhardt MA, Daly K, Swannell RPJ, Head IM (2001) Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol 90:237–247

    Article  CAS  Google Scholar 

  • Eskelinen K, Sarkka H, Kurniawan TA, Sillanpaa MET (2010) Removal of recalcitrant contaminants from bleaching effluents in pulp and paper mills using ultrasonic irradiation and Fenton-like oxidation, electrochemical treatment, and/or chemical precipitation: a comparative study. Desalination 255:179–187

    Article  CAS  Google Scholar 

  • Ghatak HR (2013) Iron complexated lignin from electrolysis of wheat straw soda black liquor and its characterization. Ind Crops Prod 43:738–744

    Article  CAS  Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete P. chrysosporium. Arch Biochem Biophys 242:329–341

    Article  CAS  Google Scholar 

  • Hu J, Shen D, Wu S, Zhang H, Xiao R (2014) Effect of temperature on structure evolution in char from hydrothermal degradation of lignin. J Anal Appl Pyrolysis 106:118–124

    Article  CAS  Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26(4):201–221

    Article  CAS  Google Scholar 

  • Iiyama K, Wallis AFA (1988) An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Sci Technol 22:271–280

    Article  CAS  Google Scholar 

  • Janshekar H, Brown C, Haltmeier Th, Leisola M, Fiechter A (1982) Bioalteration of kraft pine lignin by Phanerochaete chrysosporium. Arch Microbiol 132(1):14–21

    Article  CAS  Google Scholar 

  • Jia SY, Cox BJ, Guo XW, Zhang ZC, Ekerdt JG (2011) Hydrolytic cleavage of beta-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind Eng Chem Res 50:849–855

    Article  CAS  Google Scholar 

  • Kavitha S, Saranya T, Kaliappan S, Kumar SA, Yeom IT, Banu JR (2015) Accelerating the sludge disintegration potential of a novel bacterial strain Planococcus jake 01 by CaCl2 induced deflocculation. Bioresour Technol 175:396–405

    Article  CAS  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Evaluation of biosurfactant/bioemulsifier production by a marine bacterium. Bull Environ Contam Toxicol 79:617–621

    Article  CAS  Google Scholar 

  • Kumar M, Singh J, Singh MK, Singhal A, Thakur IS (2015) Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB. Environ Sci Pollut Res 22:15690–157902

    Article  CAS  Google Scholar 

  • Li H, Liu YH, Luo N, Zhang XY, Luan TG, Hu JM, Wang ZY, Wu PC, Chen MJ, Lu JQ (2006) Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus strain ZD22. Res Microbiol 157(7):7629–7636

    Article  Google Scholar 

  • Lu L, Kong C, Sahajwalla V, Harris D (2002) Char structural ordering during pyrolysis and combustion and its influence on char reactivity. Fuel 81:1215–1225

    Article  CAS  Google Scholar 

  • Parshetti GK, Parshetti SG, Telke AA, Kalyani DC, Doong RA, Govindwar SP (2011) Biodegradation of crystal violet by Agrobacterium radiobacter. J Environ Sci 23:1384–1393

    Article  CAS  Google Scholar 

  • Priyadarshinee R, Kumar A, Mandal T, Dasguptamandal D (2015) Improving the perspective of raw eucalyptus kraft pulp for industrial applications through autochthonous bacterial mediated delignification. Ind Crop Prod 74:293–303

    Article  CAS  Google Scholar 

  • Priyadarshinee R, Kumar A, Mandal T, Dasguptamandal D (2016) Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights. Environ Sci Pollut Res. doi:10.1007/s11356-016-7633-x

    Google Scholar 

  • Raj A, Reddy MMK, Chandra R, Purohit HJ, Kapley A (2007) Biodegradation of kraft lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation 18:783–792

    Article  CAS  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, New York

    Google Scholar 

  • Sahu JN, Acharya J, Meikap BC (2009) Response surface modeling and optimization of chromium (VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. J Hazard Mater 172:818–825

    Article  CAS  Google Scholar 

  • Saroj S, Kumar K, Pareek N, Prasad R, Singh RP (2014) Biodegradation of azo dyes acid red 183, direct blue 15 and direct red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere 107:240–248

    Article  CAS  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    Article  CAS  Google Scholar 

  • Shareefdeen Z, Baltzis BC, Oh YS, Bartha R (1993) Biofiltration of methanol vapor. Biotechnol Bioeng 41:512–524

    Article  CAS  Google Scholar 

  • Shen J, Zhang X, Chen D, Liu X, Zhang L, Sun X, Li J, Bi H, Wang L (2014) Kinetics study of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18. Bioprocess Biosyst Eng 37:1185–1192

    Article  CAS  Google Scholar 

  • Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, Jing Q (2013) Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst Eng 36:1957–1965

    Article  CAS  Google Scholar 

  • Singh S, Chatterji S, Nandini PT et al (2015) Biodegradation of azo dye Direct Orange 16 by Micrococcus luteus strain SSN2 Int J. Environ Sci Technol 12:2161. doi:10.1007/s13762-014-0588-x

    CAS  Google Scholar 

  • Soponsathien S (1998) Some characteristics of ammonia fungi 1. In relation to their ligninolytic enzyme activities. J Gen Appl Microbiol 44(5):337–345. doi:10.2323/jgam.44.337

    Article  CAS  Google Scholar 

  • Wang W (2003) The use of plant seeds in toxicity tests of phenolic compounds. Environ Int 11:49–55

    CAS  Google Scholar 

  • Yang X, Ma F, Zeng Y, Yu H, Xu C, Zhang X (2010) Structure alteration of lignin in corn stover degraded by white-rot fungus Irpex lacteus CD2. Int Biodeterior Biodegrad 64:119–123

    Article  CAS  Google Scholar 

  • Zhou X (2014) Conversion of kraft lignin under hydrothermal conditions. Bioresour Technol 170:583–586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincerest gratitude to Department of Biotechnology (DBT) New Delhi, India, for the financial support under the frame of project “Development of a Green Technology for Improvement of Paper Quality to Minimize the Generation of Genotoxic Effluents” (DBT Letter No. BT/PR/14808/BCE/08/840/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dasguptamandal.

Additional information

Editorial responsibility: M. Abbaspour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshinee, R., Kumar, A., Mandal, T. et al. Exploring the diverse potentials of Planococcus sp. TRC1 for the deconstruction of recalcitrant kraft lignin. Int. J. Environ. Sci. Technol. 14, 1713–1728 (2017). https://doi.org/10.1007/s13762-017-1257-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1257-7

Keywords