Skip to main content

Advertisement

Log in

Removing arsenic and hydrogen sulfide production using arsenic-tolerant sulfate-reducing bacteria

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Environmental remediation technologies that involve the use of sulfate-reducing bacteria constitute a feasible alternative to the remediation of sites polluted with heavy metals and metalloids. The present study evaluates hydrogen sulfide production and arsenic removal by two microbial consortia (C1 and C2) in batch systems exposed to different arsenic concentrations and oxidation states. We identify the following three consecutive stages of arsenate removal: (1) hydrogen sulfide production/accumulation, (2) arsenate reduction to arsenite associated with the incomplete oxidation of hydrogen sulfide to elemental sulfur and (3) arsenic polysulfide precipitation as the main arsenic removal mechanism from aqueous solution. Kinetic parameters are determined in regard to the arsenic oxidation state through the fit of hydrogen sulfide production. The r max reached by C1 and C2 is increased seven- or eightfold when 250 mM As[+5] was used instead 250 mM As[+3]. Arsenic removal by extracellular precipitation of arsenic polysulfides associated with elemental sulfur precipitation detected through scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM–EDS) can explain the exceptional value of r max observed at 250 mM during As[+5] exposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos L, Guwy A, Jenicek P, Kalyuzhnui S, van Lier J (2007) Anaerobic biodegradation, activity and inhibition (ABAI). Institute of Environment and Resources, Technical University of Denmark, Denmark

    Google Scholar 

  • Armienta M, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Crouzet C, Burnol A, Coulon S, Morin D, Joulian C (2012) Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor. Water Res 46:3923–3933

    Article  CAS  Google Scholar 

  • Blum J, Kulp T, Han S, Lanoil B, Saltikov C (2012) Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California. Extremophiles 16:727–742

    Article  CAS  Google Scholar 

  • Bundschuh J, Litter MI, Parvez F, Román-Rossh G, Nicolli HB, Jiin-Shuh J, Liuj CW, López D, Armiental MA, Guilherme LRG, Gomez-Cuevas A, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35

    Article  CAS  Google Scholar 

  • Canty M, Hiebert R, Harrington-Baker M (2001) Innovative, in situ use of sulfate reducing bacteria to remove heavy metals from acid mine drainage. Dissertation, International Containment and Remediation Technology Conference and Exhibition, Orlando.

  • Castro-Larragoitia J, Krama U, Puchelt H (1997) 200 years of mining activity at La Paz/San Luis Potosí/Mexico—consequences for environment and geochemical exploration. J Geochem Explor 58:81–91

    Article  CAS  Google Scholar 

  • Cheng H, Hub Y, Luoc J, Xua B, Zhao J (2009) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J Hazard Mater 165:13–26

    Article  CAS  Google Scholar 

  • Church C, Wilkin R, Alpers C (2007) Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochem Trans 8:1–14

    Article  Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulphides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:3–36

    Article  Google Scholar 

  • Costa M, Duarte J (2005) Bioremediation of acid mine drainage using acidic soil. Water Air Soil Poll 165:325–345

    Article  CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Rice WE, Greenbe AE (2005) Standard methods for the examination of water and wastewater. APHA, Baltimore

    Google Scholar 

  • Field J, Sierra-Alvarez R, Cortinas I, Feijoo G, Moreira M (2004) Facile reduction of arsenate in methanogenic sludge. Biodegradation 15:185–196

    Article  CAS  Google Scholar 

  • Foucher S, Battaglia F, Ignatiadis I, Morin D (2001) Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recover. Chem Eng Sci 56:1639–1645

    Article  CAS  Google Scholar 

  • Hoeft S, Kulp T, Stolz J, Oremland R (2004) Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Appl Environ Microbiol 70:2741–2747

    Article  CAS  Google Scholar 

  • Jong T, Parry D (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37:3379–3389

    Article  CAS  Google Scholar 

  • Kirk M, Roden E, Cro L (2010) Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochim Cosmochim Ac 74:2538–2555

    Article  CAS  Google Scholar 

  • Kocar B, Borch T, Fendorf S (2010) Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim Cosmochim Ac 74:980–994

    Article  CAS  Google Scholar 

  • Labastida-Núñez I, Flores-Moreno A, Briones-Gallardo R (2007) Selecting samples in treatability tests for metallic stabilization. In: Candela L et al (eds) Water Pollution in natural Porous media at different scales. Assessment of fate, impact and indicator. No 22, Madrid, España, p 157–163

  • Labastida-Núñez I, Lázaro I, Celis L, Razo-Flores E, Cruz R, Briones-Gallardo R (2013) Kinetic of biogenic sulfide production for microbial consortia isolated from soils with different bioaccesible concentrations of lead. Int J Environ Sci Technol 10:827–836

    Article  Google Scholar 

  • Macy M, Santini J, Paulin V (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57

    Article  CAS  Google Scholar 

  • Madigan M, Martinko J, Parker J (2000) Biologia de los microorganismos. Prentice Hall, España

    Google Scholar 

  • Martínez-Villegas N, Briones-Gallardo R, Ramos-Leal J, Avalos-Borja M, Castañón-Sandoval A, Razo-Flores E, Villalobos M (2013) Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem. Environ Pollut 176:114–122

    Article  Google Scholar 

  • Muyzer G, Stams A (2008) The ecology and biotechnology of sulfate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  Google Scholar 

  • Nevatalo L, Mäkinen A, Kaksonen A, Puhakka J (2010) Biological hydrogen sulfide production in an ethanol–lactate fed fluidized-bed bioreactor. Bioresour Technol 101:276–284

    Article  CAS  Google Scholar 

  • Newman DK, Kennedy EK, Coates JD (1997a) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388

    Article  CAS  Google Scholar 

  • Newman DK, Beveridge TJ, Morel FM (1997b) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microb 63:2022–2028

    CAS  Google Scholar 

  • Niggemyer A, Spring S, Stackebrandt E, Rosenzweig RF (2001) Isolation and characterization of a novel as[+5]-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microb 67:5568–5580

    Article  CAS  Google Scholar 

  • Onstott T, Chan E, Polizzotto M (2011) Precipitation of arsenic under sulfate reducing conditions and subsequent leaching under aerobic conditions. Appl Geochem 26:269–285

    Article  CAS  Google Scholar 

  • Oremland R, Stolz J, Dowdle P, Hoeft S, Sharp J, Miller L (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochim Cosmochim Ac 64:3073–3084

    Article  CAS  Google Scholar 

  • Postgate J (1984) The sulfate reducing bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramos-Azpeitia H, Ojeda-Escamilla MC, Cruz-Gaona R, Lázaro-Baez I, Briones-Gallardo R (2011) Bioremediation of soil impacts by mining activities by microbial sulfate reduction. In: Belviso C, Fiore S, Giannossi ML (eds) Geological and medical sciences for a safer environment. Bari, Italy, p 279

    Google Scholar 

  • Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Poll 152:129–152

    Article  CAS  Google Scholar 

  • Routh J, Bhattacharya A, Saraswathy A, Jacks G, Bhattacharya P (2007) Arsenic remobilization from sediments contaminated with mine tailings near the Adak mine in Västerbotten district (northern Sweden). J Geochem Explor 92:43–54

    Article  CAS  Google Scholar 

  • Saltikov C, Newman D (2003) Genetic identification of a respiratory arsenate reductase. PNAS 100:10983–10988

    Article  CAS  Google Scholar 

  • Stolz J, Ellis D, Blum J, Ahmann D, Lovley DR, Oremland RS (1999) Sulfurosirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the e proteobacteria. Int J Syst Bacteriol 49:1177–1180

    Article  CAS  Google Scholar 

  • Thomson M, Simonton S, Barton L (2001) Stability of arsenic and selenium inmovilized by insitu microbial reduction. Dissertation, University of New Mexico, Albuquerque

  • Vaxevanidou K, Giannikou S, Papassiopi N (2012) Microbial arsenic reduction in polluted and unpolluted soils from Attica, Greece. J Hazard Mater 241:307–315

    Article  Google Scholar 

  • Zobrist J, Dowdle P, Davis J (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council of Science and Technology of Mexico for scholarships 414,060 and also to Ms. I. López Acosta and Ms. R.L. Tovar Tovar for analytical support and Ms. C. Pesina Sifuentes for editing of figures and images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Briones-Gallardo.

Additional information

Editorial responsibility: J. Aravind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briones-Gallardo, R., Escot-Espinoza, V.M. & Cervantes-González, E. Removing arsenic and hydrogen sulfide production using arsenic-tolerant sulfate-reducing bacteria. Int. J. Environ. Sci. Technol. 14, 609–622 (2017). https://doi.org/10.1007/s13762-016-1174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1174-1

Keywords

Navigation