Skip to main content

Advertisement

Log in

Toxinogenicity and cytotoxicity of Alternaria, Aspergillus and Penicillium moulds isolated from working environments

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

There is currently limited research available on the secondary metabolites of moulds in workplaces. The aim of this study was to determine the mould contamination in museums (N = 4), composting plants (N = 4) and tanneries (N = 4) and the secondary metabolite profiles of Alternaria, Aspergillus and Penicillium isolates from these workplaces. Alternaria, Aspergillus and Penicillium species were identified using the ITS1/2 sequence of the rDNA region. Mould metabolites were quantitatively analysed on standard laboratory medium and mineral medium containing materials specific to each workplace using liquid chromatography-mass spectrometry. We also examined the cytotoxicity of the moulds using MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assays. Air microbiological contamination analyses showed a number of microorganisms, ranging from 2.4 × 103 CFU m−3 (composting plants) to 6.8 × 104 CFU m−3 (tanneries). We identified high percentages of Alternaria, Aspergillus and Penicillium moulds (air 57–59%, surfaces 10–65%) in all workplaces. The following moulds were the most cytotoxic (>90%): Alternaria alternata, A. limoniasperae, Aspergillus flavus, Penicillium biourgeianum, P. commune and P. spinulosum. The same mould species isolated from different working environments exhibited varying toxigenic and cytotoxic properties. Modifying the culture medium to simulate environmental conditions most often resulted in the inhibition of secondary metabolite production. Moulds isolated from the working environments produced the following mycotoxins (ng g−1): chanoclavines (0.28–204), cyclopiazonic acid (27.1–1045), fumigaclavines (0.33–10,640,000), meleagrin (0.57–13,393), roquefortins (0.01–16,660), rugulovasines (112–220), viridicatin (0.12–957), viridicatol (4.23–2753) and quinocitrinines (0.07–1104), which may have a negative impact on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Autrup JL, Schmidt J, Autrup H (1993) Exposure to aflatoxin B1 in animal-feed production plant workers. Environ Health Perspect 99:195–197

    CAS  Google Scholar 

  • Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin HD, Dugan FM, Schroers HJ, Braun U, Crous PW (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67:1–94

    Article  CAS  Google Scholar 

  • Boudra H, Morgavi DP (2005) Mycotoxin risk evaluation in feeds contaminated by Aspergillus fumigatus. Anim Feed Sci Tech 120:113–123

    Article  CAS  Google Scholar 

  • Brera C, Caputi R, Miraglia M, Iavicoli I, Salerno A, Carelli G (2002) Exposure assessment to mycotoxins in workplaces: aflatoxins and ochratoxin A occurrence in airborne dusts and human sera. Microchem J 73(1):167–173

    Article  CAS  Google Scholar 

  • Buczyńska A, Sowiak M, Szadkowska-Stańczyk I (2008) Occupational exposure to mesophilic microorganisms associated with commercial processing of compost for mushroom production. Med Pr 59(5):373–379 (in Polish)

    Google Scholar 

  • Bünger J, Westphal G, Mönnich A, Hinnendahl B, Hallier E, Müller M (2004) Cytotoxicity of occupationally and environmentally relevant mycotoxins. Toxicology 202(3):199–211

    Article  Google Scholar 

  • Di Paolo N, Guarnieri A, Loi F, Sacchi G, Mangiarotti AM, di Paolo M (1993) Acute renal failure from inhalation of mycotoxins. Nephron 64:621–625

    Article  Google Scholar 

  • EU (2002) Commission decision of 12 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC)

  • Fischer G, Dott W (2003) Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch Microbiol 179:75–82

    Article  CAS  Google Scholar 

  • Frisvad J, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174

    Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Gniadek A, Macura AB, Twarużek M, Grajewski J (2010) Cytotoxicity of Aspergillus strains isolated from neonatal intensive care unit environment. Adv Med Sci 55(2):242–249

    Article  CAS  Google Scholar 

  • Gordon KE, Masotti RE, Waddell WR (1993) Tremorgenic encephalopathy: a role of mycotoxins in the production of CNS disease in humans? Can J Neurol Sci 20:237–239

    Article  CAS  Google Scholar 

  • Gutarowska B, Skóra J, Stępień Ł, Twarużek M, Błajet-Kosicka A, Otlewska A, Grajewski J (2014) Estimation of moulds contamination and mycotoxins production at the workplaces in composting plants, tanneries, archives and libraries. World Mycotoxin J 7:345–355

    Article  CAS  Google Scholar 

  • Gysels K, Delalieux F, Deutsch F, Griekena RV, Camuffo D, Bernardi A, Sturaro G, Bussec H-J, Wieser M (2004) Indoor environment and conservation in the royal museum of fine arts Antwerp Belgium. J Cult Herit 5:221–230

    Article  Google Scholar 

  • Halstensen AS, Nordby KC, Klemsdal SS, Elen O, Clasen PE, Eduard W (2006) Toxigenic Fusarium spp. as determinants of trichothecene mycotoxins in settled grain dust. J Occup Environ Hyg 3:651–659

    Article  CAS  Google Scholar 

  • Hayes RB, van Nieuwenhuize JP, Raatgever JW, Ten Kate FJW (1984) Aflatoxin exposures in the industrial setting: an epidemiological study of mortality. Food Chem Toxicol 22:39–43

    Article  CAS  Google Scholar 

  • Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692

    Article  CAS  Google Scholar 

  • Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100

    Article  CAS  Google Scholar 

  • Itoh Y, Kodama K, Furuya K, Takahashi S, Haneishi T, Takiguchi Y, Arai M (1980) A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization. J Antibiot (Tokyo) 33(5):468–473

    Article  CAS  Google Scholar 

  • Jarvis BB, Hinkley SF, Nielsen KF (2000) Stachybotrys: an unusual mold associated with water-damaged buildings. Mycotoxin Res 16A:105–108

    Article  Google Scholar 

  • Jurjevic Z, Peterson SW, Horn BW (2012) Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 3(1):59–79

    Article  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures Utrecht, The Netherlands

    Google Scholar 

  • Kozlovsky AG, Zhelifonova VP, Antipova TV (2013) Biologically active metabolites of Penicillium fungi. Signpost Open Access J Org Biomol Chem 1:11–21

    Google Scholar 

  • Malachova A, Sulyok M, Beltran E, Berthiller F, Krska R (2014) Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all relevant mycotoxins in four model food matrices. J Chromatogr A 1362:145–156

    Article  CAS  Google Scholar 

  • Mikušová P, Sulyok M, Šrobárová A (2014) Alternaria mycotoxins associated with grape berries in vitro and in situ. Biologia 69(2):173–177

    Google Scholar 

  • Nielsen KF (2002) Mould growth on building materials. Secondary metabolites, mycotoxins and biomarkers. Biocentrum-DTU Technical University of Denmark, Lyngby

    Google Scholar 

  • Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395:1225–1242

    Article  CAS  Google Scholar 

  • Nowak A, Śliżewska K, Gajęcka M, Piotrowska M, Żakowska Z, Zielonka Ł, Gajęcki M (2015) The genotoxicity of cecal water from gilts following experimentally induced Fusarium mycotoxicosis. Vet Med-Czech 60(3):133–140

    Article  Google Scholar 

  • Oluwafemi F, Odebiyi T, Kolapo A (2012) Occupational aflatoxin exposure among feed mill workers in Nigeria. World Mycotoxin J 5(4):385–389

    Article  CAS  Google Scholar 

  • Ostry V (2008) Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J 1(2):175–188

    Article  CAS  Google Scholar 

  • Persoons RS, Parat M, Stoklov Perdrix A, Maitre A (2010) Critical working tasks and determinants of exposure to bioaerosols and MVOC at composting facilities. Int J Hyg Environ Health 213:338–347

    Article  CAS  Google Scholar 

  • Petzinger E, Ziegler K (2000) Ochratoxin A from a toxicological perspective. J Vet Pharmacol Ther 23:91–98

    Article  CAS  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and Food Spoilage. Springer, New York

    Book  Google Scholar 

  • Robbins CA, Swenson LJ, Nealley ML, Gots RE, Kelman BJ (2000) Health effects of mycotoxins in indoor air: a critical review. Appl Occup Environ Hyg 15:773–784

    Article  CAS  Google Scholar 

  • Rojas TI, Martinez E, Gomez Y, Alvarado Y (2002) Airborne spores of Aspergillus species in cultural institutions at Havana University. Grana 41:190–193

    Article  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC (1996) Introduction to foodborne fungi, 5th edn. Centraalbureau voor Schimmenuturees, Baarn

    Google Scholar 

  • Schlosser O, Huyard A, Cartnick K, Yanez A, Catalan V, Quang Z (2009) Bioaerosol in composting facilities: occupational health risk assessment. Water Environ Res 81:866–877

    Article  CAS  Google Scholar 

  • Schulz T, Senkpiel K, Ohgke H (2004) Comparison of the toxicity of the reference mycotoxins and spore extracts of common indoor moulds. Int J Hyg Environ Health 207:267–277

    Article  CAS  Google Scholar 

  • Skóra J, Gutarowska B, Stępień Ł, Otlewska A, Pielech-Przybylska K (2014) The evaluation of microbial contamination in the working environment of tanneries. Med Pr 65(1):15–32

    Google Scholar 

  • Skowroń J, Górny R (2012) Harmful biological agents. In: Augustyńska D, Pośniak M (eds) The interdepartmental commission for maximum admissible concentrations and intensities for agents harmful to health in the working environment: limit values 2012. Centralny Instytut Ochrony Pracy–Państwowy Instytut Badawczy, Warszawa

    Google Scholar 

  • Sorenson WG (1999) Fungal spores: hazardous to health. Environ Health Perspect 107(Supl.3):469–472

    Article  Google Scholar 

  • Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom 20:2649–2665

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wiszniewska M, Walusiak-Skorupa J, Pannenko I, Draniak M, Pałczyński C (2009) Occupational exposure and sensitization to fungi among museum workers. Occup Med 59:237–242

    Article  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Studies in libraries were realized within the project of the Polish National Center for Research and Development coordinated by Central Institute for Labour Protection National Research Institute, Grant number III.B.03. Development of principles for evaluation and prevention of hazards caused by biological agents in the working environment using indicators of microbial contamination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Skóra.

Additional information

Editorial responsibility: Xu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skóra, J., Sulyok, M., Nowak, A. et al. Toxinogenicity and cytotoxicity of Alternaria, Aspergillus and Penicillium moulds isolated from working environments. Int. J. Environ. Sci. Technol. 14, 595–608 (2017). https://doi.org/10.1007/s13762-016-1172-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1172-3

Keywords

Navigation