Skip to main content

Moving bed biofilm reactor to treat wastewater

Abstract

This review carries out a comparative study of advanced technologies to design, upgrade and rehabilitate wastewater treatment plants. The study analyzed the relevant researches in the last years about the moving bed biofilm reactor process with only attached biomass and with hybrid biomass, which combined attached and suspended growth; both could be coupled with a secondary settling tank or microfiltration/ultrafiltration membrane as a separation system. The physical process of membrane separation improved the organic matter and NH4 +-N removal efficiencies compared with the settling tank. In particular, the pure moving bed biofilm reactor–membrane bioreactor showed average chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen removal efficiencies of 88.32, 90.84 and 60.17%, respectively, and the hybrid moving bed biofilm reactor–membrane bioreactor had mean chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen reduction percentages of 91.18, 97.34 and 68.71%, respectively. Moreover, the hybrid moving bed biofilm reactor–membrane bioreactor showed the best efficiency regarding organic matter removal for low hydraulic retention times, so this system would enable the rehabilitation of activated sludge plants and membrane bioreactors that did not comply with legislation regarding organic matter removal. As the pure moving bed biofilm reactor–membrane bioreactor performed better than the hybrid moving bed biofilm reactor–membrane bioreactor concerning the total nitrogen removal under low hydraulic retention times, this system could be used to adapt wastewater treatment plants whose effluent was flowed into sensitive zones where total nitrogen concentration was restricted. This technology has been reliably used to upgrade overloaded existing conventional activated sludge plants, to treat wastewater coming from textile, petrochemical, pharmaceutical, paper mill or hospital effluents, to treat wastewater containing recalcitrant compounds efficiently, and to treat wastewater with high salinity and/or low and high temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Accinelli C, Saccà ML, Mencarelli M, Vicari A (2012) Application of bioplastic moving bed biofilm carriers for the removal of synthetic pollutants from wastewater. Bioresour Technol 120:180–186

    CAS  Article  Google Scholar 

  • Achilli A, Marchand EA, Childress AE (2011) A performance evaluation of three membrane bioreactor systems: aerobic, anaerobic, and attached-growth. Water Sci Technol 63:2999–3005

    CAS  Article  Google Scholar 

  • Ahl RM, Leiknes T, Ødegaard H (2006) Tracking particle size distributions in a moving bed biofilm membrane reactor for treatment of municipal wastewater. Water Sci Technol 53(7):33–42

    CAS  Article  Google Scholar 

  • Almomani F, Delatolla R, Örmeci B (2014) Field study of moving bed biofilm reactor technology for post-treatment of wastewater lagoon effluent at 1 °C. Environ Technol 35(13):1596–1604

    CAS  Article  Google Scholar 

  • Araujo Junior MMD, Lermontov A, Araujo PLDS, Zaiat M (2013) Reduction of sludge generation by the addition of support material in a cyclic activated sludge system for municipal wastewater treatment. Bioresour Technol 143:483–489

    Article  CAS  Google Scholar 

  • Arévalo J, Ruiz LM, Parada-Albarracín JA, Gonález-Pérez DM, Pérez J, Moreno B, Gómez MA (2012) Wastewater reuse after treatment by MBR. Microfiltration or ultrafiltration? Desalination 299:22–27

    Article  CAS  Google Scholar 

  • Bui X-T, Le L-T, Nguyen P-D, Visvanathan C (2014) Industrial wastewater reuse by airlift external membrane bioreactor. Sustain Environ Res 24(1):41–47

    CAS  Google Scholar 

  • Cao CY, Zhao YH (2012) The comparison of MBBR and ASP for treatment on petrochemical wastewater. Pet Sci Technol 30:1461–1467

    CAS  Article  Google Scholar 

  • Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J 155(1–2):1–18

    CAS  Article  Google Scholar 

  • Cuevas-Rodríguez G, Cervantes-Avilés P, Torres-Chávez I, Bernal-Martínez A (2015) Evaluation of different configurations of hybrid membrane bioreactors for treatment of domestic wastewater. Water Sci Technol 71:338–346

    Article  CAS  Google Scholar 

  • Davis JA, Harrison K, Shields B (2009) Compact technology: increasing treatment capacity without building more basins. Fla Water Resour J 7:24–29

    Google Scholar 

  • De la Torre T, Rodríguez C, Gómez MA, Alonso E, Malfeito JJ (2013) The IFAS–MBR process: a compact combination of biofilm and MBR technology as RO pretreatment. Desalin Water Treat 51:1063–1069

    Article  CAS  Google Scholar 

  • De la Torre T, Alonso E, Santos JL, Rodríguez C, Gómez MA, Malfeito JJ (2015) Trace organics removal using three membrane bioreactor configurations: MBR, IFAS–MBR and MBMBR. Water Sci Technol 71:761–768

    Article  CAS  Google Scholar 

  • Di Bella G, Di Trapani D, Torregrossa M, Viviani G (2013) Performance of a MBR pilot plant treating high strength wastewater subject to salinity increase: analysis of biomass activity and fouling behaviour. Bioresour Technol 147:614–618

    Article  CAS  Google Scholar 

  • Di Bella G, Di Trapani D, Freni G, Torregrossa M, Viviani G (2014) Analysis of biomass characteristics in MBR and MB-MBR systems fed with synthetic wastewater: influence of a gradual salinity increase. Chem Eng Trans 38:445–450

    Google Scholar 

  • Di Trapani D, Mannina G, Torregrossa M, Viviani G (2008) Hybrid moving bed biofilm reactors: a pilot plant experiment. Water Sci Technol 57(10):1539–1545

    Article  CAS  Google Scholar 

  • Di Trapani D, Mannina G, Torregrossa M, Viviani G (2010) Comparison between hybrid moving bed biofilm reactor and activated sludge system: a pilot plant experiment. Water Sci Technol 61(4):891–902

    Article  CAS  Google Scholar 

  • Di Trapani D, Christensso M, Ødegaard H (2011) Hybrid activated sludge/biofilm process for the treatment of municipal wastewater in a cold climate region: a case study. Water Sci Technol 63(6):1121–1129

    Article  CAS  Google Scholar 

  • Di Trapani D, Christensson M, Torregrossa M, Viviani G, Ødegaard H (2013) Performance of a hybrid activated sludge/biofilm process for wastewater treatment in a cold climate region: influence of operating conditions. Biochem Eng J 77:214–219

    Article  CAS  Google Scholar 

  • Di Trapani D, Di Bella G, Mannina G, Torregrossa M, Viviani G (2014) Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: Influence of wastewater salinity variation. Bioresour Technol 162:60–69

    Article  CAS  Google Scholar 

  • Di Trapani D, Di Bella G, Mannina G, Torregrossa M, Viviani G (2015) Effect of C/N shock variation on the performances of a moving bed membrane bioreactor. Bioresour Technol 189:250–257

    Article  CAS  Google Scholar 

  • Dong B, Chen H, Yang Y, He Q, Dai X (2014) Treatment of printing and dyeing wastewater using MBBR followed by membrane separation process. Desalin Water Treat 52:4562–4567

    CAS  Article  Google Scholar 

  • Dong B, Chen H-Y, Yang Y, He Q-B, Dai X-H (2015) Biodegradation of polychlorinated biphenyls using a moving-bed biofilm reactor. Clean Soil Air Water 43:1078–1083

    CAS  Article  Google Scholar 

  • Duan L, Jiang W, Song Y, Xia S, Hermanowicz SW (2013a) The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor–membrane bioreactor. Bioresour Technol 148:436–442

    CAS  Article  Google Scholar 

  • Duan L, Song Y, Jiang W, Hermanowicz SW (2013b) The effect of media fill ratio on membrane fouling in moving bed bioreactors–membrane bioreactor. Adv Mater Res 726–731:470–473

    Article  CAS  Google Scholar 

  • Duan L, Tian Y, Liu X, Song Y, Yang L, Zhang J (2015a) Comparison between moving bed-membrane bioreactor and conventional membrane bioreactor systems. Part II: bacterial community. Environ Earth Sci 73:4891–4902

    CAS  Article  Google Scholar 

  • Duan L, Li S, Han L, Song Y, Zhou B, Zhang J (2015b) Comparison between moving bed-membrane bioreactor and conventional membrane bioreactor systems. Part I: membrane fouling. Environ Earth Sci 73:4881–4890

    CAS  Article  Google Scholar 

  • Dvorak L, Lederer T, Jirku V, Masak J, Novak L (2014) Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor. Process Biochem 49:102–109

    CAS  Article  Google Scholar 

  • Falletti L, Conte L (2007) Upgrading of activated sludge wastewater treatment plants with hybrid moving-bed biofilm reactors. Ind Eng Chem Res 46(21):6656–6660

    CAS  Article  Google Scholar 

  • Ferrai M, Guglielmi G, Andreottola G (2010) Modelling respirometric tests for the assessment of kinetic and stoichiometric parameters on MBBR biofilm for municipal wastewater treatment. Environ Model Softw 25(5):626–632

    Article  Google Scholar 

  • Gander M, Jefferson B, Judd S (2000) Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Sep Purif Technol 18(2):119–130

    CAS  Article  Google Scholar 

  • Germain E, Bancroft L, Dawson A, Hinrichs C, Fricker L, Pearce P (2007) Evaluation of hybrid processes for nitrification by comparing MBBR/AS and IFAS configurations. Water Sci Technol 55(8–9):43–49

    CAS  Article  Google Scholar 

  • González-Martínez A, Leyva-Díaz JC, Rodríguez-Sánchez A, Muñoz-Palazón B, Rivadeneyra A, Poyatos JM, Rivadeneyra MA, Martínez-Toledo MV (2015) Isolation and metagenomic characterization of bacteria associated with calcium carbonate and struvite precipitation in a pure moving bed biofilm reactor–membrane bioreactor. Biofouling 31:333–348

    Article  CAS  Google Scholar 

  • Guibaud G, Tixier N, Bouju A, Baudu M (2003) Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere 52(10):1701–1710

    CAS  Article  Google Scholar 

  • Günder B, Krauth K (1999) Replacement of secondary clarification by membrane separation—results with tubular, plate and hollow fibre modules. Water Sci Technol 40(4–5):311–320

    Article  Google Scholar 

  • Guo J, Guan W, Xia S (2014) Membrane fouling of hybrid submerged membrane bioreactor (hMBR) in treating municipal wastewater. Desalin Water Treat 52:6858–6867

    CAS  Article  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling-an overview. RSC Adv 2:6380–6388

    CAS  Article  Google Scholar 

  • Hem LJ, Rusten B, Ødegaard H (1994) Nitrification in a moving bed biofilm reactor. Water Res 28(6):1425–1433

    CAS  Article  Google Scholar 

  • Hosseini SH, Borghei SM (2005) The treatment of phenolic wastewater using a moving bed bio-reactor. Process Biochem 40:1027–1031

    CAS  Article  Google Scholar 

  • Hu J, Ren H, Xu K, Geng J, Ding L, Yan X, Li K (2012) Effect of carriers on sludge characteristics and mitigation of membrane fouling in attached-growth membrane bioreactor. Bioresour Technol 122:35–41

    CAS  Article  Google Scholar 

  • Ivanovic I, Leiknes T (2008) Impact of aeration rates on particle colloidal fraction in the biofilm membrane bioreactor (BF-MBR). Desalination 231(1–3):182–190

    CAS  Article  Google Scholar 

  • Ivanovic I, Leiknes T (2012) The biofilm membrane bioreactor (BF-MBR): a review. Desalin Water Treat 37:288–295

    CAS  Article  Google Scholar 

  • Ivanovic I, Leiknes T, Ødegaard H (2008) Fouling control by reduction of submicron particles in a BF-MBR with an integrated flocculation zone in the membrane reactor. Sep Sci Technol 43(7):1871–1883

    CAS  Article  Google Scholar 

  • Jahren SJ, Rintala JA, Odegaard H (2002) Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions. Water Res 36:1067–1075

    CAS  Article  Google Scholar 

  • Jang D, Hwang Y, Shin H, Lee W (2013) Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors. Bioresour Technol 141:50–56

    CAS  Article  Google Scholar 

  • Jarpa M, Pozo G, Baeza R, Martínez M, Vidal G (2012) Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor. J Environ Sci Health A 47:2052–2059

    CAS  Article  Google Scholar 

  • Jie L, Liu L, Yang F, Liu F, Liu Z (2012) The configuration and application of helical membrane modules in MBR. J Membr Sci 392–393:112–121

    Article  CAS  Google Scholar 

  • Kermani M, Bina B, Movahedian H, Amin MM, Nikaein M (2008) Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater. Am J Environ Sci 4(6):675–682

    CAS  Article  Google Scholar 

  • Khan SJ, Ilyas S, Javid S, Visvanathan C, Jegatheesan V (2011) Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresour Technol 102:5331–5336

    Article  CAS  Google Scholar 

  • Khan SJ, Zohaib-Ur-Rehman Visvanathan C, Jegatheesan V (2012) Influence of biofilm carriers on membrane fouling propensity in moving biofilm membrane bioreactor. Bioresour Technol 113:161–164

    Article  CAS  Google Scholar 

  • Khan SJ, Ahmad A, Nawaz MS, Hankins NP (2014) Membrane fouling and performance evaluation of conventional membrane bioreactor (MBR), moving biofilm MBR and oxic/anoxic MBR. Water Sci Technol 69:1403–1409

    CAS  Article  Google Scholar 

  • Kim H-S, Gellner JW, Boltz JP, Freudenberg RG, Gunsch CK, Schuler AJ (2010) Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems. Water Res 44(5):1553–1561

    CAS  Article  Google Scholar 

  • Kim H-C, Shin J, Won S, Lee J-Y, Maeng SK, Song KG (2015) Membrane distillation combined with an anaerobic moving bed biofilm reactor for treating municipal wastewater. Water Res 71:97–106

    CAS  Article  Google Scholar 

  • Lazarova V, Manem J (1996) An innovative process for wastewater treatment: the circulating floating bed reactor. Water Sci Technol 34(9):89–99

    CAS  Article  Google Scholar 

  • Lei G, Ren H, Ding L, Wang F, Zhang X (2010) A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park. Bioresour Technol 101:5852–5861

    CAS  Article  Google Scholar 

  • Leiknes T, Ødegaard H (2001) Moving bed biofilm membrane reactor (MBB-M-R): characteristics and potentials of a hybrid process design for compact wastewater treatment plants. In: The proceeding of engineering with membranes, pp 3–6

  • Leiknes T, Ødegaard H (2002) Combination of moving bed biofilm reactor and membrane filtration. Membrane filtration technology for water treatment. In: Proceedings, Japan/Norway workshop NTNU

  • Levstek M, Plazl I (2009) Influence of carrier type on nitrification in the moving-bed biofilm process. Water Sci Technol 59(5):875–882

    CAS  Article  Google Scholar 

  • Leyva-Díaz JC, Poyatos JM (2015) Start-up of membrane bioreactor and hybrid moving bed biofilm reactor–membrane bioreactor: kinetic study. Water Sci Technol 72(11):1948–1953

    Article  CAS  Google Scholar 

  • Leyva-Díaz JC, Calderón K, Rodríguez FA, González-López J, Hontoria E, Poyatos JM (2013a) Comparative kinetic study between moving bed biofilm reactor–membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal. Biochem Eng J 77:28–40

    Article  CAS  Google Scholar 

  • Leyva-Díaz JC, Martín-Pascual J, González-López J, Hontoria E, Poyatos JM (2013b) Effects of scale-up on a hybrid moving bed biofilm reactor–membrane bioreactor for treating urban wastewater. Chem Eng Sci 104:808–816

    Article  CAS  Google Scholar 

  • Leyva-Díaz JC, Martín-Pascual J, Muñío MM, González-López J, Hontoria E, Poyatos JM (2014) Comparative kinetics of hybrid and pure moving bed reactor–membrane bioreactors. Ecol Eng 70:227–234

    Article  Google Scholar 

  • Leyva-Díaz JC, González-Martínez A, González-López J, Muñío MM, Poyatos JM (2015a) Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor–membrane bioreactor for wastewater treatment. Chem Eng J 259:692–702

    Article  CAS  Google Scholar 

  • Leyva-Díaz JC, González-Martínez A, Muñío MM, Poyatos JM (2015b) Two-step nitrification in a pure moving bed biofilm reactor–membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling. Appl Microbiol Biotechnol 99:10333–10343

    Article  CAS  Google Scholar 

  • Leyva-Díaz JC, López-López C, Martín-Pascual J, Muñío MM, Poyatos JM (2015c) Kinetic study of the combined processes of a membrane bioreactor and a hybrid moving bed biofilm reactor–membrane bioreactor with advanced oxidation processes as a post-treatment stage for wastewater treatment. Chem Eng Process 91:57–66

    Article  CAS  Google Scholar 

  • Li J, Yang YI, Xue K (2012) The applications of MBR in municipal wastewater treatment and reuse. Appl Mech Mater 295–298:1045–1048

    Article  Google Scholar 

  • López-López C, Martín-Pascual J, González-Martínez A, Calderon K, González-López J, Hontoria E, Poyatos JM (2012) Influence of filling ratio and carrier type on organic matter removal in a moving bed biofilm reactor with pretreatment of electrocoagulation in wastewater treatment. J Environ Sci Health A 47:1759–1767

    Article  CAS  Google Scholar 

  • Lu M, Gu L-P, Xu W-H (2013) Treatment of petroleum refinery wastewater using a sequential anaerobic–aerobic moving-bed biofilm reactor system based on suspended ceramsite. Water Sci Technol 67(9):1976–1983

    CAS  Article  Google Scholar 

  • Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Kang J, Xia S, Zhang Z, Price WE (2014) Removal and fate of micropollutants in a sponge-based moving bed bioreactor. Bioresour Technol 159:311–319

    CAS  Article  Google Scholar 

  • Luo Y, Jiang Q, Ngo HH, Nghiem LD, Hai FI, Price WE, Wang J, Guo W (2015) Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor–membrane bioreactor system. Bioresour Technol 191:355–359

    CAS  Article  Google Scholar 

  • Mannina G, Viviani G (2009) Hybrid moving bed biofilm reactors: an effective solution for upgrading a large wastewater treatment plant. Water Sci Technol 60(5):1103–1116

    CAS  Article  Google Scholar 

  • Mannina G, Di Trpani D, Torregrossa M, Viviali G (2007) Modelling of hybrid moving bed biofilm reactors: a pilot plant experiment. Water Sci Technol 55(8–9):237–246

    CAS  Article  Google Scholar 

  • Martín-Pascual J, López-López C, Cerdá A, González-López J, Hontoria E, Poyatos JM (2012) Comparative kinetic study of carrier type in a moving bed system applied to organic matter removal in urban wastewater treatment. Water Air Soil Pollut 223(4):1699–1712

    Article  CAS  Google Scholar 

  • Martín-Pascual J, Reboleiro-Rivas P, López-López C, González-López J, Hontoria E, Poyatos JM (2014) Influence of hydraulic retention time on heterotrophic biomass in a wastewater moving bed membrane bioreactor treatment plant. Int J Environ Sci Technol 11:1449–1458

    Article  CAS  Google Scholar 

  • Martín-Pascual J, Reboleiro-Rivas P, López-López C, Leyva-Díaz JC, Jóver M, Muñío MM, González-López J, Poyatos JM (2015a) Effect of the filling ratio, MLSS, hydraulic retention time, and temperature on the behavior of the hybrid biomass in a hybrid moving bed membrane bioreactor plant to treat urban wastewater. J Environ Eng 141(7):04015007

    Article  CAS  Google Scholar 

  • Martín-Pascual J, Leyva-Díaz JC, Poyatos JM (2015b) Treatment of urban wastewater with pure moving bed membrane bioreactor technology at different filling ratios, hydraulic retention times and temperatures. Ann Microbiol. doi:10.1007/s13213-015-1145-7

    Google Scholar 

  • Martín-Pascual J, Poyatos JM, Hontoria E (2015c) Improvement of a conventional activated sludge process using a hybrid moving bed system. Afinidad 72:572

    Google Scholar 

  • Martín-Pascual J, Leyva-Díaz JC, López-López C, Muñío MM, Hontoria E, Poyatos JM (2015d) Effects of temperature on the permeability and critical flux of the membrane in a moving bed membrane bioreactor. Desalin Water Treat 53:3439–3448

    Article  Google Scholar 

  • Mehrdadi N, Azimi AA, Nabi Bidhendi GR, Hooshyari B (2006) Determination of design criteria of an IFAS reactor in comparison with an extended aeration activated sludge process. Iran J Environ Health Sci Eng 3(1):53–64

    CAS  Google Scholar 

  • Mousaab A, Claire C, Magali C, Christophe D (2015) Upgrading the performances of ultrafiltration membrane system coupled with activated sludge reactor by addition of biofilm supports for the treatment of hospital effluents. Chem Eng J 262:456–463

    CAS  Article  Google Scholar 

  • Mulkerrins D, Dobson ADW, Colleran E (2004) Parameters affecting biological phosphate removal from wastewaters. Environ Int 30(2):249–259

    CAS  Article  Google Scholar 

  • Nguyen NC, Chen S-S, Nguyen HT, Ngo HH, Guo W, Hao CW, Lin P-H (2015) Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment. Sci Total Environ 518–519:586–594

    Article  CAS  Google Scholar 

  • Ødegaard H, Rusten B, Westrum T (1994) A new moving bed biofilm reactor—applications and results. Water Sci Technol 29(10–11):157–165

    Google Scholar 

  • Park HO, Oh S, Bade R, Shin WS (2010) Application of A2O moving-bed biofilm reactors for textile dyening wastewater treatment. Korean J Chem Eng 27(3):893–899

    CAS  Article  Google Scholar 

  • Pastorelli G, Canziani R, Pedrazzi L, Rozzi A (1999) Phosphorus and nitrogen removal in moving-bed sequencing batch biofilm reactors. Water Sci Technol 40(4–5):169–176

    CAS  Article  Google Scholar 

  • Pei Y, Chen D (2011) A study of treating saline CMC process wastewater at full scale with a combination of MBBR + MBR. IEEE, 978-1-4244-5089-3/11/$26.00

  • Plattes M, Fiorelli D, Gillé S, Girard C, Henry E, Minette F, O’Nagy O, Schosseler PM (2007a) Modelling and dynamic simulation of a moving bed bioreactor using respirometry for the estimation of kinetic parameters. Biochem Eng J 33:253–259

    CAS  Article  Google Scholar 

  • Plattes M, Fiorelli D, Gillé S, Girard C, Henry E, Minette F, O’Nagy O, Schosseler PM (2007b) Modelling and dynamic simulation of a pilot scale moving bed bioreactor for the treatment of municipal wastewater: model concepts and the use of respirometry for the estimation of kinetic parameters. Water Sci Technol 55(8–9):309–316

    CAS  Article  Google Scholar 

  • Pozo G, Villamar CA, Martínez M, Vidal G (2012) Effect of organic load and nutrient ratio on the operation stability of the moving bed bioreactor for kraft mill wastewater treatment and the incidence of polyhydroxyalkanoate biosynthesis. Water Sci Technol 66(2):370–376

    CAS  Article  Google Scholar 

  • Quan F, Yuxiao W, Tianmin W, Hao Z, Libing C, Chong Z, Hongzhang C, Xiuqin K, Xin-Hui X (2012) Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors. Bioresour Technol 117:201–207

    Article  CAS  Google Scholar 

  • Rafiei B, Naeimpoor F, Mohammadi T (2014) Bio-film and bio-entrapped hybrid membrane bioreactors in wastewater treatment: comparison of membrane fouling and removal efficiency. Desalination 337:16–22

    CAS  Article  Google Scholar 

  • Rahimi Y, Torabian A, Mehrdadi N, Habibi-Rezaie M, Pezeshk H, Nabi-Bidhendi G-R (2011) Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor. J Hazard Mater 186:1097–1102

    CAS  Article  Google Scholar 

  • Reboleiro-Rivas P, Martín-Pascual J, Juárez-Jiménez B, Poyatos JM, Hontoria E, Rodelas B, González-López J (2013) Enzymatic activities in a moving bed membrane bioreactor for real urban wastewater treatment: effect of operational conditions. Ecol Eng 61:23–33

    Article  Google Scholar 

  • Reboleiro-Rivas P, Martín-Pascual J, Juárez-Jiménez B, Poyatos JM, Vílchez-Vargas R, Vlaeminck SE, Rodelas B, González-López J (2015) Nitrogen removal in a moving bed membrane bioreactor for municipal sewage treatment: community differentiation in attached biofilm and suspended biomass. Chem Eng J 277:209–218

    CAS  Article  Google Scholar 

  • Rusten B, Ødegaard H, Lundar A (1992) Treatment of dairy wastewater in a novel moving bed biofilm reactor. Water Sci Technol 26(3–4):703–711

    CAS  Google Scholar 

  • Rusten B, Hem LJ, Ødegaard H (1995) Nitrification of municipal wastewater in moving-bed biofilm reactors. Water Environ Res 67(1):75–85

    CAS  Article  Google Scholar 

  • Rusten B, Eikebrokk B, Ulgenes Y, Lygren E (2006) Design and operations of the Kaldnes moving bed biofilm reactors. Aquac Eng 34(3):322–331

    Article  Google Scholar 

  • Rutt K, Seda J, Johnson CH (2006) Two year case study of integrated fixed film activated sludge (IFAS) at Broomfield, CO WWTP. In: Proceedings of the water environment federation, pp 225–239

  • Saleh TA (2015a) Mercury sorption by silica/carbon nanotubes and silica/activated carbon: a comparison study. J Water Supply Res Technol Aqua 64(8):892–903

    Article  Google Scholar 

  • Saleh TA (2015b) Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ Sci Pollut Res 22:16721–16731

    CAS  Article  Google Scholar 

  • Saleh TA (2016) Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): from surface properties to sorption mechanism. Desalin Water Treat 57(23):10730–10744

    CAS  Article  Google Scholar 

  • Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106

    CAS  Article  Google Scholar 

  • Saleh TA, Muhammad AM, Ali SA (2016) Synthesis of hydrophobic cross-linked polyzwitterionic acid for simultaneous sorption of Eriochrome black T and chromium ions from binary hazardous waters. J Colloid Interface Sci 468:324–333

    CAS  Article  Google Scholar 

  • Scheneider EE, Cerqueira ACFP, Dezotti M (2010) MBBR evaluation for oil refinery wastewater treatment, with post-ozonation and BAC, for wastewater reuse. Water Sci Technol 63(1):143–148

    Article  CAS  Google Scholar 

  • Shi Y, Huang C, Rocha KC, El-Din MG, Liu Y (2015) Treatment of oil sands process-affected water using moving bed biofilm reactors: with and without ozone pretreatment. Bioresour Technol 192:219–227

    CAS  Article  Google Scholar 

  • Shore JL, M’Coy WS, Gunsch CK, Deshusses MA (2012) Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater. Bioresour Technol 112:51–60

    CAS  Article  Google Scholar 

  • Sriwiriyarat T, Randall CW (2005) Performance of IFAS wastewater treatment processes for biological phosphorus removal. Water Res 39(16):3873–3884

    CAS  Article  Google Scholar 

  • Tian Z, Xin W, Song Y, Li F (2015) Simultaneous organic carbon and nitrogen removal from refractory petrochemical dry-spun acrylic fiber wastewater by hybrid A/O-MBR process. Environ Earth Sci 73:4903–4910

    CAS  Article  Google Scholar 

  • Van der Roest H, Roeleveld P, Stamperius P (1999) Optimising sludge treatment in the Netherlands. Water 21:23–25

    Google Scholar 

  • Wang R-C, Wen X-H, Qian Y (2005) Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochem 40(9):2992–3001

    CAS  Article  Google Scholar 

  • Wang XJ, Xia SQ, Chen L, Zhao JF, Renault NJ, Chovelon JM (2006) Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor. Process Biochem 41(4):824–828

    CAS  Article  Google Scholar 

  • Welander U, Henrysson T, Welander T (1998) Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res 32(5):1564–1570

    CAS  Article  Google Scholar 

  • Yang S, Yang F (2011) Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor. J Hazard Mater 195:318–323

    CAS  Article  Google Scholar 

  • Yang Q, Chen J, Zhang F (2006) Membrane fouling control in a submerged membrane bioreactor with porous, flexible suspended carriers. Desalination 189(1–3):292–302

    CAS  Article  Google Scholar 

  • Yang S, Yang F, Fu Z, Lei R (2009a) Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresour Technol 100:2369–2374

    CAS  Article  Google Scholar 

  • Yang S, Yang F, Fu Z, Lei R (2009b) Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on membrane fouling. Bioresour Technol 100(24):6655–6657

    CAS  Article  Google Scholar 

  • Yang S, Yang F, Fu Z, Wang T, Lei R (2010) Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J Hazard Mater 175:551–557

    CAS  Article  Google Scholar 

  • Yang F, Wang Y, Bick A, Girlon J, Brenner A, Gillerman L, Herzberg M, Oron G (2012) Performance of different configurations of hybrid growth membrane bioreactor HG-MBR) for treatment of mixed wastewater. Desalination 284:261–268

    CAS  Article  Google Scholar 

  • Yang W, Syed W, Zhou H (2014) Comparative study on membrane fouling between membrane-coupled moving bed biofilm reactor and conventional membrane bioreactor for municipal wastewater treatment. Water Sci Technol 69:1021–1027

    CAS  Article  Google Scholar 

  • Yuan Q, Wang H, Hang Q, Deng Y, Liu K, Li C, Zheng S (2015) Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent. Environ Sci Pollut Res 22(18):13970–13979

    CAS  Article  Google Scholar 

  • Zhang J, Loong WLC, Chou S, Tang C, Wang R, Fane AG (2012) Membrane biofouling and scaling in forward osmosis membrane bioreactor. J Membr Sci 403–404:8–14

    Article  CAS  Google Scholar 

  • Zinatizadeh AAL, Ghaytooli E (2015) Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): process modeling and optimization. J Taiwan Inst Chem Eng 53:98–111

    CAS  Article  Google Scholar 

  • Zuriaga-Agustí E, Alventosa-deLara E, Barredo-Damas S, Alcaina-Miranda MI, Iborra-Clar MI, Mendoza-Roca JA (2014) Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system. Water Res 54:199–210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministries of Science and Technology (Ref. CTM2009-11929-C02-01), Economy and Competitiveness (Ref. CTM2013-48154-P) and Education, Culture and Sport in the training plan of Becas del Programa de Formación de Profesorado Universitario (FPU) under the grant AP2010-1552 awarded to J.C. Leyva-Díaz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Poyatos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

J. C. Leyva-Díaz and J. Martín-Pascual have contributed equally to this work.

Editorial responsibility: M. Abbaspour

Appendices

Nomenclature

AEF:

Acid-extractable fraction

AOB:

Ammonium-oxidizing bacteria

AOPs:

Advanced oxidation processes

AS:

Activated sludge

BD:

Biofilm density

BOD5 :

Biochemical oxygen demand on the fifth day

COD:

Chemical oxygen demand

DeNB:

Denitrifying bacteria

DO:

Dissolved oxygen

EPS:

Extracellular polymeric substances

HRT:

Hydraulic retention time

KAOB :

Half-saturation coefficient for ammonium-nitrogen

kd :

Decay coefficient for heterotrophic and autotrophic biomass

KM :

Half-saturation coefficient for organic matter

KNH :

Half-saturation coefficient for ammonium-nitrogen

KNOB :

Half-saturation coefficient for nitrite-nitrogen

KS :

Substrate half-saturation coefficient

MBBR:

Moving bed biofilm reactor

MBR:

Membrane bioreactor

MLSS:

Mixed liquor suspended solids

NA:

Naphthenic acid

NOB:

Nitrite-oxidizing bacteria

PCB:

Polychlorinated biphenyl

Q 0 :

Volumetric flow rate of influent

Q S :

Volumetric flow rate of effluent

Q W :

Volumetric flow rate of purged sludge

r d :

Cell decay rate

r su :

Substrate degradation rate

r x :

Cell growth rate

\(r_{\text{g}}^{{\prime }}\) :

Net cell growth rate

S :

Substrate concentration

S 0 :

Substrate concentration of influent

S S :

Substrate concentration of effluent

S W :

Substrate concentration of purged sludge

SADm :

Specific aeration demand per membrane area

SMP:

Soluble microbial products

SRT:

Sludge retention time

TMP:

Transmembrane pressure

TKN:

Total Kjeldahl nitrogen

TN:

Total nitrogen

TP:

Total phosphorus

t :

Time

TSS:

Total suspended solids

V :

Bioreactor volume

WWTP:

Wastewater treatment plant

X :

Biomass concentration

X 0 :

Biomass concentration of influent

X S :

Biomass concentration of effluent

X W :

Biomass concentration of purged sludge

Y :

Yield coefficient

Y A :

Yield coefficient for autotrophic bacteria

Y AOB :

Yield coefficient for ammonium-oxidizing bacteria

Y H :

Yield coefficient for heterotrophic bacteria

Y NOB :

Yield coefficient for nitrite-oxidizing bacteria

Greek symbols

µ :

Specific growth rate

µ m :

Maximum specific growth rate

µ m,A :

Maximum specific growth rate for autotrophic biomass

µ m,H :

Maximum specific growth rate for heterotrophic biomass

μ m,AOB :

Maximum specific growth rate for ammonium-oxidizing bacteria

μ m,NOB :

Maximum specific growth rate for nitrite-oxidizing bacteria

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leyva-Díaz, J.C., Martín-Pascual, J. & Poyatos, J.M. Moving bed biofilm reactor to treat wastewater. Int. J. Environ. Sci. Technol. 14, 881–910 (2017). https://doi.org/10.1007/s13762-016-1169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1169-y

Keywords

  • Kinetic modeling
  • Membrane bioreactor
  • Moving bed biofilm reactor
  • Nutrient removal
  • Wastewater treatment