Skip to main content

Advertisement

Log in

Functionalized nanobiomaterials: high-performance sorbents for chromium remediation from water streams

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In present work, fabrication of functionally tailored nanobiomaterials paraben-modified nanocellulose (PNC) and (2,3-epoxypropyl) trimethylammonium chloride-modified nanocellulose (EPTMAC-NC) for the remediation of trivalent and hexavalent chromium, respectively, from water streams has been done. The resulting PNC and EPTMAC-NC were characterized before and after sorption of chromium using spectroscopic and microscopic techniques. The sorption performance of PNC (23.92 mg/g; 95.67 %) and EPTMAC-NC (23.99 mg/g; 95.94 %) was evaluated for trivalent and hexavalent chromium, respectively, at 0.5 g biosorbent dose; 500 mL sample volume; 25 mg/L chromium conc.; 40 min kinetic time; pH (6.5 for trivalent and 2.5 for hexavalent chromium) and 298 K temperature. From isothermic, kinetic and thermodynamic modeling, the sorption of trivalent and hexavalent chromium was physisorption, spontaneous, feasible and endothermic in nature. These findings expose new path in the line of high performance, scalable and economic nanobiomaterials for the abatement of toxic metals from water streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agarwal S, Sadegh H, Monajjemi M, Hamdy AS, Ali GAM, Memar AOH, Shahryari-ghoshekandi R, Tyagi I, Gupta VK (2016) Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. J Mol Liq 218:191–197. doi:10.1016/j.molliq.2016.02.060

    Article  CAS  Google Scholar 

  • Akhavan B, Jarvis K, Majewski P (2015) Plasma polymer-functionalized silica particles for heavy metals removal. ACS Appl Mater Interfaces 7:4265–4274. doi:10.1021/am508637k

    Article  CAS  Google Scholar 

  • Anirudhan TS, Jalajamony S (2010) Cellulose-based anion exchanger with tertiary amine functionality for the extraction of arsenic(V) from aqueous media. J Environ Manag 91:2201–2207. doi:10.1016/j.jenvman.2010.05.019

    Article  CAS  Google Scholar 

  • Anirudhan TS, Rejeena SR (2012) Poly(acrylic acid)-modified poly(glycidylmethacrylate)-grafted nanocellulose as matrices for adsorption of lysozyme from aqueous solutions. Chem Eng J 187:150–159. doi:10.1016/j.cej.2012.01.113

    Article  CAS  Google Scholar 

  • Anirudhan TS, Nima J, Divya PL (2013) Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups. Appl Surf Sci 279:441–449. doi:10.1016/j.apsusc.2013.04.134

    Article  CAS  Google Scholar 

  • Bernardoa GRR, Renea RMJ, Catalina ATM (2009) Chromium(III) uptake by agro-waste biosorbents: chemical characterization, sorption–desorption studies, and mechanism. J Hazard Mater 170:845–854. doi:10.1016/j.jhazmat.2009.05.046

    Article  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125. doi:10.1016/j.jhazmat.2011.11.073

    Article  Google Scholar 

  • Duran C, Ozdes D, Gundogdu A, Senturk HB (2011) Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J Chem Eng Data 56:2136–2147. doi:10.1021/je101204j

    Article  CAS  Google Scholar 

  • Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230. doi:10.1021/bm400219u

    Article  Google Scholar 

  • Ghahafarrokhi IS, Khodaiyan F, Mousavi M, Yousefi H (2015) Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound. Fibers Polym 16:529–536. doi:10.1007/s12221-015-0529-4

    Article  Google Scholar 

  • Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res 35:1125–1134. doi:10.1016/S0043-1354(00)00389-4

    Article  CAS  Google Scholar 

  • Gupta VK, Singh P, Rahman N (2004) Adsorption behavior of Hg(II), Pb(II) and Cd(II) from aqueous solution on Duolite C-433: a synthetic resin. J Colloid Interface Sci 275:398–402. doi:10.1016/j.jcis.2004.02.046

    Article  CAS  Google Scholar 

  • Gupta VK, Bhushan R, Nayak A, Singh P, Bhushan B (2014) Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Bioremediation J 18:179–191. doi:10.1080/10889868.2014.918574

    Article  CAS  Google Scholar 

  • Gupta VK, Sadegh H, Yari M, Shahryari Ghoshekandi R, Maazinejad B, Chahardori M (2015a) Removal of ammonium ions from wastewater: a short review in development of efficient methods. Glob J Environ Sci Manag 1:149–158. doi:10.7508/gjesm.2015.02.007

    Google Scholar 

  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B (2015b) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195–214. doi:10.3923/std.2015.195.214

    Article  Google Scholar 

  • Gupta VK, Moradi O, Tyagi I, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf ASH, Goodarzi M, Garshasbi A (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol 46:93–118. doi:10.1080/10643389.2015.1061874

    Article  CAS  Google Scholar 

  • Gurgel LVA, de Melo JCP, de Lena JC, Gil LF (2009) Adsorption of chromium(VI) ion from aqueous solution by succinylated mercerized cellulose functionalized with quaternary ammonium groups. Bioresour Technol 100:3214–3220. doi:10.1016/j.biortech.2009.01.068

    Article  CAS  Google Scholar 

  • Heymann E, Rabinov G (1942) Determination of the carboxyl group content of cellulose and oxycellulose. Trans Faraday Soc 38:209–213. doi:10.1039/TF9423800209

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Sillanpaa M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47. doi:10.1016/j.cej.2013.02.054

    Article  CAS  Google Scholar 

  • Ioelovich M (2012) Optimal conditions for isolation of nanocrystalline cellulose particles. Nanosci Nanotechnol 2:9–13. doi:10.5923/j.nn.20120202.03

    Article  Google Scholar 

  • Jain P, Varshney S, Srivastava S (2015) Site-specific functionalization for chemical speciation of Cr(III) and Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling. Appl Water Sci 1:1–13. doi:10.1007/s13201-015-0356-1

    Google Scholar 

  • Jumean F, Khamis M, Sara Z, AbouRich M (2015) Concurrent removal and reduction of Cr(VI) by wool: short and long term equilibration studies. Am J Anal Chem 6:47–57. doi:10.4236/ajac.2015.61005

    Article  CAS  Google Scholar 

  • Kardam AK, Raj KR, Arora JK, Srivastava S (2012) Artificial neural network modelling for biosorption of Pb(II) ions on nanocellulose fibres. Bionanoscience 2:153–160. doi:10.1007/s12668-012-0045-6

    Article  Google Scholar 

  • Kumar ASK, Rajesh N, Kalidhasan S, Rajesh V (2011) An enhanced adsorption methodology for the detoxification of chromium using n-octylamine impregnated amberlite XAD-4 polymeric sorbent. J Environ Sci Health Part A Toxic hazard Subst Environ Eng 46:1598–1610. doi:10.1080/10934529

    Article  CAS  Google Scholar 

  • Kumar ASK, Kalidhasan S, Rajesh V, Rajesh N (2012) Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater. Ind Eng Chem Res 51:58–69. doi:10.1021/ie201349h

    Article  CAS  Google Scholar 

  • Kumrić KR, Đukić AB, Trtić-Petrović TM, Vukelić NS, Stojanović Z, Novaković JDG, Matović LL (2013) simultaneous removal of divalent heavy metals from aqueous solutions using raw and mechanochemically treated interstratified montmorillonite/kaolinite clay. Ind Eng Chem Res 52:7930–7939. doi:10.1021/ie400257k

    Article  Google Scholar 

  • Lee XJ, Foo LPJ, Tan KW, Hassell DG, Lee LY (2012) Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution. J Environ Sci 24:1559–1568. doi:10.1016/S1001-0742(11)60987-X

    Article  CAS  Google Scholar 

  • Liu M, Zhang H, Zhang X, Deng Y, Liu W, Zhan H (2001) Removal and recovery of chromium(III) from aqueous solutions by a spheroidal cellulose adsorbent. Water Environ Res 73:322–328. doi:10.1002/ep.11998

    Article  CAS  Google Scholar 

  • Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. doi:10.1016/j.carbpol.2010.04.073

    Article  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859. doi:10.1021/es8006904

    Article  CAS  Google Scholar 

  • Ou H, Tan W, Niu CH, Feng R (2015) Enhancement of the stability of biosorbents for metal-ion adsorption. Ind Eng Chem Res 54:6100–6107. doi:10.1021/acs.iecr.5b00518

    Article  CAS  Google Scholar 

  • Qiu B, Guo J, Zhang X, Sun D, Gu H, Wang Q, Wang H, Wang X, Zhang XX, Weeks BL, Guo Z, Wei S (2014) Polyethylenimine facilitated ethyl cellulose for hexavalent chromium removal with a wide pH range. ACS Appl Mater Interfaces 6:19816–19824. doi:10.1021/am505170j

    Article  CAS  Google Scholar 

  • Qiu B, Gu H, Yan X, Guo J, Wang Y, Sun D, Wang Q, Khan M, Zhang X, Week BL, Young DP, Zhanhu G, Wei S (2015) Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures. J Mater Chem A 2:17454–17462. doi:10.1039/C5TA01227A

    Article  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJJ (2013) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46:834–843. doi:10.1021/ar300029v

    Article  CAS  Google Scholar 

  • Racho P, Phalathip P (2014) Modified starch-enhanced ultrafiltration for chromium(VI) removal. J Clean Energy Technol 2:18–22. doi:10.7763/JOCET.2014.V2.83

    Article  CAS  Google Scholar 

  • Rahman N, Haseen U (2014) equilibrium modeling, kinetic, and thermodynamic studies on adsorption of Pb(II) by a hybrid inorganic − organic material: polyacrylamide zirconium(IV) iodate. Ind Eng Chem Res 53:8198–8207. doi:10.1021/ie500139k

    Article  CAS  Google Scholar 

  • Renault F, Morin-Crini N, Gimbert F, Badot PM, Crini G (2008) Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. acid blue 25 from aqueous solutions. Bioresour Technol 99:7573–7586. doi:10.1016/j.biortech.2008.02.011

    Article  CAS  Google Scholar 

  • Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9:91–99. doi:10.1021/bm700849j

    Article  CAS  Google Scholar 

  • Sadegh H, Shahryari-Ghoshekandi R, Masjedi A, Mahmoodi Z, Kazemi M (2016) A review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions. Int J Nano Dimens 7:109–120. doi:10.7508/ijnd.2016.02.002

    Google Scholar 

  • Sajomsang W, Gonil P, Tantayanon S (2009) Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: preparation and characterization. Int J Biol Macromol 44:419–427. doi:10.1016/j.ijbiomac

    Article  CAS  Google Scholar 

  • Sari A, Mendil D, Tuzen M, Soylak M (2008) Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chem Eng J 144(1):1–9. doi:10.1016/j.cej.2007.12.020

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310. doi:10.1038/nature06599

    Article  CAS  Google Scholar 

  • Sharma P, Kumari P, Srivastava MM, Srivastava S (2007) Ternary Biosorption Studies of Cd(II), Cr(III) and Ni(II) on Shelled Moringa oleifera seeds. Bioresour Technol 98:474–477. doi:10.1016/j.biortech.2005.12.016

    Article  CAS  Google Scholar 

  • Shubo D, Peng TY (2005) Polyetyhyleimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms. Environ Sci Technol 29:8490–8496. doi:10.1021/es050697u

    Google Scholar 

  • Singh K, Arora JK, Sinha TJM, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modeling approach. Clean Technol Environ Policy 16:1179–1191. doi:10.1007/s10098-014-0717-8

    Article  CAS  Google Scholar 

  • Singh K, Sinha TJM, Srivastava S (2015) Functionalized nanocrystalline cellulose: smart biosorbent for decontamination of arsenic. Int J Miner Process 139:51–63. doi:10.1016/j.minpro.2015.04.014

    Article  CAS  Google Scholar 

  • Spinelli VA, Laranjeira MC, Favere VT (2014) Preparation and characterization of quaternary chitosan salt: adsorption equilibrium of chromium(VI) ion. React Funct Polym 61:347–352. doi:10.1016/j.reactfunctpolym.2004.06.010

    Article  Google Scholar 

  • Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52. doi:10.1016/j.seppur.2007.07.008

    Article  CAS  Google Scholar 

  • Sun XF, Ma Y, Liu XW, Wang SG, Gao BY, Li XM (2010) Sorption and detoxification of chromium(VI) by aerobic granules functionalized with polyethylenimine. Water Res 44:2517–2524. doi:10.1016/j.watres.2010.01.027

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2015) Chemical functionalization of carbon nanomaterials: chemistry and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Varshney S, Jain P, Arora JK, Srivastava S (2016a) Process development for the removal of toxic metals by functionalized wood pulp: kinetic, thermodynamic, and computational modeling approach. Clean Technnol Environ Policy. doi:10.1007/s10098-016-1175-2

    Google Scholar 

  • Varshney S, Jain P, Srivastava S (2016b) Designing and potential use of tailored wood pulp to remove heavy metals from aqueous system: kinetic and thermodynamic studies. Sep Sci Technol. doi:10.1080/01496395.2016.1165247

    Google Scholar 

  • Wang L, Zhang J, Zhao R, Li C, Li Y, Zhang C (2010) Adsorption of basic dyes on activated carbon prepared from Polygonumorientale Linn: equilibrium, kinetic and thermodynamic studies. Desalination 254:68–74. doi:10.1016/j.desal.2009.12.012

    Article  CAS  Google Scholar 

  • Wang WQ, Li MY, Zeng QX (2012) Thermodynamics of Cr(VI) adsorption on strong alkaline anion exchange fiber. Trans Nonferrous Met Soc China 22:2831–2839. doi:10.1016/S1003-6326(11)61539-2

    Article  CAS  Google Scholar 

  • Wei H, Rodriguez K, Renneckar S, Vikesland P (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316. doi:10.1039/C4EN00059E

    Article  CAS  Google Scholar 

  • Yang J, Li L, Yan C (2011) Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym 86:1558–1564. doi:10.1016/j.carbpol.2011.06.061

    Article  Google Scholar 

  • Zare K, Gupta VK, Moradi O, Makhlouf ASH, Sillanpää M, Nadagouda MN, Sadegh H, Shahryari-ghoshekandi R, Pal A, Wang Z, Tyagi I, Kazemi M (2015) A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. J Nanostruct Chem 5:227–236. doi:10.1007/s40097-015-0158-x

    Article  Google Scholar 

  • Zargoosh K, Abedini H, Abdolmaleki A, Molavian MR (2013) Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles. Ind Eng Chem Res 52:14944–14954. doi:10.1021/ie401971w

    Article  CAS  Google Scholar 

  • Zhang M, Yao Q, Lu C, Li Z, Wang W (2014) Layered double hydroxide − carbon dot composite: high-performance adsorbent for removal of anionic organic dye. ACS Appl Mater Interfaces 6:20225–20233. doi:10.1021/am505765e

    Article  CAS  Google Scholar 

  • Zhang J, Shang T, Jin X, Gao J, Zhao Q (2015) Study of chromium(VI) removal from aqueous solution using nitrogen-enriched activated carbon based bamboo processing residues. RSC Adv 5:784–790. doi:10.1039/c4ra11016a

    Article  CAS  Google Scholar 

  • Zheng Y, Wang W, Huang D, Wang A (2012) Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal. Chem Eng J 191:54–161. doi:10.1016/j.cej.2012.02.088

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the DST-INSPIRE Fellowship (IF140213) section of the Department of Science and Technology (DST), New Delhi, India for financial support of this work. The Authors also thank the Director of Dayalbagh Educational Institute and Head, Department of Chemistry for providing all the needed facilities and inspiration to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Srivastava.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Varshney, S. & Srivastava, S. Functionalized nanobiomaterials: high-performance sorbents for chromium remediation from water streams. Int. J. Environ. Sci. Technol. 13, 2893–2904 (2016). https://doi.org/10.1007/s13762-016-1115-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1115-z

Keywords