Advertisement

Potential of anthracite, dolomite, limestone and pozzolan as reactive media for de-icing salt removal from road runoff

  • A. de Santiago-Martín
  • A. Michaux
  • G. Guesdon
  • B. Constantin
  • M. Despréaux
  • R. Galvez-Cloutier
Original Paper

Abstract

De-icing salt (NaCl) application is a common practice during winter road maintenance in northern countries, compromising ecosystem services. Ecoengineering facilities, including reactive filter beds, are becoming an effective strategy for road runoff management. Different materials (anthracite coal, dolomite, limestone, and pozzolan) were tested as reactive media of filter beds. Characterization showed that dolomite has the best physical properties (resistance to fragmentation, porosity) for filter bed construction and maintenance, followed by limestone. NaCl removal efficiency was investigated in batch at different concentrations (150–5000 mg L−1 Cl). Removal efficiency substantially varied depending on the element (Cl or Na), the material, and the added NaCl concentration. At the lowest NaCl concentration, Cl removal was higher onto anthracite (48 %) and dolomite (59 %); but greater Na removal was reached onto limestone (54 %) and pozzolan (67 %). At higher concentrations, Cl removal was similar (anthracite), decreased (dolomite), or increased (limestone, pozzolan); and Na removal increased (anthracite) or decreased (dolomite, limestone, pozzolan). Parallel experiments at 4 °C showed lower NaCl removal, anthracite being the most efficient. Practical applicability was evaluated in columns using synthetic runoff solution (NaCl and metals). NaCl removal efficiency was much lower in column assays with respect to batch. The highest NaCl removal was reached onto dolomite, followed by limestone. Metals were successfully removed, generally remaining over time in a wide range (41–89 % Cd, 78–97 % Ni, 44–88 % Cu, and 3–83 % Zn) depending on the material, being pozzolan the least efficient. Further studies including a combination of materials would be of high interest.

Keywords

Adsorption Filter beds Geomaterials Highway pollution NaCl Surface water Trace metals 

Notes

Acknowledgments

This research was supported by the Autoroute du Sud de la France Company (ASF). The authors especially wish to thank Christophe Anzoras of Vinci Autoroutes–ASF for technical discussions on the results, Dr. Javier Pérez Esteban for his assistance in the data modelling, and Michel Bisping for his laboratory assistance.

References

  1. AFNOR (1990) Granulats: essai de fragmentation dynamique NF P 18-574. Association Française de NormalisationGoogle Scholar
  2. Albadarin AB, Mangwandi C, Al-Muhtaseb AH, Walker GM, Allen SJ, Ahmad MNM (2012) Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem Eng J 179:193–202CrossRefGoogle Scholar
  3. Al-Rawajfeh AE, Al-Shamaileh EM, Al-Whoosh K, Al-Ma’abrah A, Al-Zorqan R, Zanoon R, Rawajfeh K, Al-Jufout S (2013) Adsorption desalination of chloride ions on composite natural–synthetic materials: an approach for the reduction of chlorine corrosion in electrodeionization units. J Ind Eng Chem 19:1895–1902CrossRefGoogle Scholar
  4. Aziz HA, Yusoff MS, Adlan MN, Adnan NH, Alias S (2004) Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Manag 24:353–358CrossRefGoogle Scholar
  5. Bäckström M, Karlsson S, Bäckman L, Folkeson L, Lind B (2004) Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res 38:720–732CrossRefGoogle Scholar
  6. Barral MT, Paradelo R, Liste A, Cancelo-González J, Balufo A, Prieto DM (2014) Reutilization of granite powder as a component of permeable reactive barriers for the treatment of Cr(VI)-contaminated waters. Span J Soil Sci 4:179–191Google Scholar
  7. Blomqvist G (2001) De-icing salt and the roadside environment. PhD Dissertation, Royal Institute of TechnologyGoogle Scholar
  8. Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18CrossRefGoogle Scholar
  9. Cottin N, Merlin G (2010) Fate of chlorinated benzenes in laboratory peat and pozzolana filters. Water Air Soil Pollut 213:425–435CrossRefGoogle Scholar
  10. Dai HL, Zhang KL, Xu XL, Yu HY (2012) Evaluation on the effects of deicing chemicals on soil and water environment. Procedia Environ Sci 13:2122–2130CrossRefGoogle Scholar
  11. Fuerhacker M, Haile TM, Monai B, Mentler A (2011) Performance of a filtration system equipped with filter media for parking lot runoff treatment. Desalin 275:118–125CrossRefGoogle Scholar
  12. Galvez-Cloutier R, Michaux A (2013) Faisabilité de transposition des unités de lit filtrant et marais conçus par U. Laval à des conditions françaises. Essais d’adsorption sur les matériaux pour la garniture du lit filtrant réactif. Technical report, Université LavalGoogle Scholar
  13. Galvez-Cloutier R, Triffaut-Bouchet G, Roy S (2014) Eco-Engineering process for the treatment of contaminants from salted highway runoff: Adapted wetland and active filter. In: 11th international conference phytotecnologies. Heraklion, CreteGoogle Scholar
  14. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J Colloid Interface Sci 47:755–765CrossRefGoogle Scholar
  15. Goel J, Kadirvelu K, Rajagopal C, Kumar Garg V (2005) Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies. J Hazard Mater 125:211–220CrossRefGoogle Scholar
  16. Green SM, Machin R, Cresser MS (2008) Long-term road salting effects on dispersion of organic matter from roadside soils into drainage water. Chem Ecol 24:221–231CrossRefGoogle Scholar
  17. Guesdon G, Galvez R (2012) Faisabilité de transposition des unités de lit filtrant et marais conçus par U. Laval à des conditions françaises. Parties 2: Essaies en vue de la conception du lit filtrant réactif et du marais épurateur construit adapté. Technical report, Université LavalGoogle Scholar
  18. Guesdon G, Galvez-Cloutier R, Triffault-Bouchet G (2013) Evaluation pilote d’un marais épurateur construit adapté et d’un lit filtrant réactif pour le traitement du ruisellement routier: Suivi de l’écosystème et résultats de performance. Technical report, Université LavalGoogle Scholar
  19. Gustafsson JP (2011) Visual MINTEQ, v.3.0. Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm. http://www2.lwr.kth.se/English/OurSoftware/Vminteq/index.htm
  20. Ishikawa M, Ichikuni M (1984) Uptake of sodium and potassium by calcite. Chem Geol 42:137–146CrossRefGoogle Scholar
  21. Jiang C, Jia L, Zhang B, He Y, Kirumba G (2014) Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution. J Environ Sci 26:466–477CrossRefGoogle Scholar
  22. Karaca S, Gürses A, Ejder M, Açikyildiz M (2004) Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J Colloid Interface Sci 277:257–263CrossRefGoogle Scholar
  23. Karadag D, Koc Y, Turan M, Ozturk M (2007) A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolite. J Hazard Mater 144:432–437CrossRefGoogle Scholar
  24. Kim Y-J, Yang H, Yoon S-H, Korai Y, Mochida I, Ku C-H (2003) Anthracite as a candidate for lithium ion battery anode. J Power Sources 113:157–165CrossRefGoogle Scholar
  25. Lv L, Sun P, Gu Z, Du H, Pang X, Tao X, Xu R, Xu L (2009) Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger. J Hazard Mater 161:1444–1449CrossRefGoogle Scholar
  26. Mateus DMR, Vaz MMN, Pinho HJO (2012) Fragmented limestone wastes as a constructed wetland substrate for phosphorus removal. Ecol Eng 41:65–69CrossRefGoogle Scholar
  27. Morteau B, Galvez-Cloutier R, Leroueil S (2008) Développement d’une chaîne de traitement pour l’atténuation des contaminants provenant des sels de voiries de l’autoroute Félix-Leclerc: lit filtrant et marais épurateur construit adapté. Raport Technique, Université Laval, QuebecGoogle Scholar
  28. Okumura M, Kitano Y (1986) Coprecipitation of alkali metal ions with calcium carbonate. Geochim Cosmochim Acta 50:49–58CrossRefGoogle Scholar
  29. Pansu M, Gautheyrou J (2006) Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer, BerlinGoogle Scholar
  30. Parham H, Saeed S (2013) Simultaneous removal of nitrobenzene, 1,3-dinitrobenzene and 2,4-dichloronitrobenzene from water samples using anthracite as a potential adsorbent. J Environ Chem Eng 1:1117–1123CrossRefGoogle Scholar
  31. Prochaska CAA, Zouboulis AII (2006) Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecol Eng 26:293–303CrossRefGoogle Scholar
  32. Rasa K, Peltovuori T, Hartikainen H (2006) Effects of de-icing chemicals sodium chloride and potassium formate on cadmium solubility in a coarse mineral soil. Sci Total Environ 366:819–825CrossRefGoogle Scholar
  33. Reddy KR, Xie T, Dastgheibi S (2014) Removal of heavy metals from urban stormwater runoff using different filter materials. J Environ Chem Eng 2:282–292CrossRefGoogle Scholar
  34. Rémi S, Ivana D, Guillaume D, Patrice B, Marchetti M (2013) Transfer, exchanges and effects of road deicing salts in a detention pond treating road water. Energy Procedia 36:1296–1299CrossRefGoogle Scholar
  35. Santamarina JC, Klein KA, Wang YH, Prencke E (2002) Specific surface: determination and relevance. Can Geotech J 39:233–241CrossRefGoogle Scholar
  36. Sdiri A, Higashi T, Jamoussi F, Bouaziz S (2012) Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J Environ Manag 93:245–253CrossRefGoogle Scholar
  37. Silva AM, Lima RMF, Leão VA (2012) Mine water treatment with limestone for sulfate removal. J Hazard Mater 221–222:45–55CrossRefGoogle Scholar
  38. Toprak A, Kopac T (2011) Surface and hydrogen sorption characteristics of various activated carbons developed from rat coal mine (Zonguldak) and anthracite. Chin J Chem Eng 19:931–937CrossRefGoogle Scholar
  39. Tromp K, Lima AT, Barendregt A, Verhoeven JTA (2012) Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing. J Hazard Mater 203–204:290–298CrossRefGoogle Scholar
  40. Vohla C, Kõiv M, Bavor HJ, Chazarenc F, Mander Ü (2011) Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecol Eng 37:70–89CrossRefGoogle Scholar
  41. Wang J, Zhang Y, Feng C, Li J, Li G (2009) Adsorption capacity for phosphorus comparison among activated alumina, silica sand and anthracite coal. J Water Resour Prot 04:260–264CrossRefGoogle Scholar
  42. Wong T, Breen P, Lloyd S (2000) Water sensitive road design–design options for improving stormwater quality of road runoff. Technical Report 00/1. Cooperative Research Centre for Catchment HydrologyGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2016

Authors and Affiliations

  • A. de Santiago-Martín
    • 1
  • A. Michaux
    • 1
  • G. Guesdon
    • 1
  • B. Constantin
    • 1
  • M. Despréaux
    • 2
  • R. Galvez-Cloutier
    • 1
  1. 1.Department of Civil Engineering and Water EngineeringLaval UniversityQuebecCanada
  2. 2.Vinci Autoroutes - Autoroute du Sud de la France, Direction Technique de l’InfrastructureParisFrance

Personalised recommendations