Skip to main content
Log in

Treatment of septic tank effluent using moving-bed biological reactor: kinetic and biofilm morphology

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Septic tanks are very commonly used wastewater collection systems throughout the world, and especially in rural areas. In this study, the use of moving-bed biological reactors (MBBR) for the treatment of septic tank effluent (STE) was examined. The study was conducted in two phases. In Phase I, the performance of septic tanks from four projects working under different operational conditions and with different service lives was followed to determine the parameters that required further treatment. In Phase II, four specially designed continuous flow pilot-plant MBBRs and one laboratory-scale batch reactor were tested for their efficiency in treating STE. Experiments were carried out at various temperatures (8–25 °C) and with different hydraulic retention times (HRTs). MBBR effectively reduced STE’s nutrients and chemical oxygen demand by 90 and 85 %, respectively, over 180 days of operation. The average ammonia removal rate at 25 °C increased from 0.279 to 0.540 kg N/m3 when the reactor HRT changed from 5.7 to 13.3 h. Under these conditions, the ammonia removal kinetics were successfully correlated with a theta model with an average θ value of 1.054. The biofilm morphology showed a stable and global biomass coverage (>70 %) and a high percentage of live cells. A thinner biofilm was observed when the MBBR operated at high temperatures. The results of this study showed that MBBR is a promising technology for post-treatment of septic tank effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadi E, Gholami M, Farzadkia M, Nabizadeh R, Azari A (2015) Study of moving bed biofilm reactor in diethyl phthalate and diallyl phthalate removal from synthetic wastewater. Bioresour Technol 183:129–135

    Article  CAS  Google Scholar 

  • Almomani FA, Delatolla R, Ormeci B (2014) Field study of moving bed biofilm reactor technology for post-treatment of wastewater lagoon effluent at 1°C. Environ Technol 35(13):1596–1604

    Article  CAS  Google Scholar 

  • American Public Health Association, American Water Works Association, Water Environment Federation (APHA, AWWA, WEF) (eds) (1995) Standard methods for the examination of water and wastewater. 19th edn. APHA, Washington, DC

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48(5):835–852

    CAS  Google Scholar 

  • Blackburne R, Vadivelu VM, Yuan Z, Keller JR (2007) Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res 41(14):3033–3042

    Article  CAS  Google Scholar 

  • Chu W, Gao N, Deng Y, Templeton MR, Yin D (2011) Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products. Bioresour Technol 102(24):11161–11166

    Article  CAS  Google Scholar 

  • Delatolla R, Tufenkji N, Comeau Y, Gadbois A, Lamarre D, Berk D (2010) Investigation of laboratory-scale and pilot-scale attached growth ammonia removal kinetics at cold temperature and low influent carbon. Water Qual Res J Can 45(4):427–436

    CAS  Google Scholar 

  • Di Trapani D, Di Bella G, Mannina G, Torregrossa M, Viviani G (2015) Effect of C/N shock variation on the performances of a moving bed membrane bioreactor. Bioresour Technol 189:250–257

    Article  Google Scholar 

  • Diak J, Ormeci B, Kennedy KJ (2012) Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance. Bioprocess Biosyst Eng 35(9):1577–1589

    Article  CAS  Google Scholar 

  • Diak J, Ormeci B, Kennedy KJ (2013) Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. Bioprocess Biosyst Eng 36(4):417–424

    Article  CAS  Google Scholar 

  • Hao X, Heijnen JJ, Van Loosdrecht MCM (2002) Model-based evaluation of temperature and inflow variations on a partial nitrification—ANAMMOX biofilm process. Water Res 36(19):4839–4849

    Article  CAS  Google Scholar 

  • Hoang V, Delatolla R, Abujamel T, Mottawea W, Gadbois A, Laflamme E, Stintzi A (2014) Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1°C. Water Res 49:215–224

    Article  CAS  Google Scholar 

  • Houweling DW, Monette F, Millette L, Comeau Y (2007) Modelling nitrification of a lagoon effluent in moving-bed bioiflm reactors. Water Qual Res J Can 42(4):284–294

    CAS  Google Scholar 

  • Jantrania AR, Gross MA (2006) Advanced onsite wastewater systems technologies. CRC Press, Boca Raton. ISBN 0-8493-3029-7

    Google Scholar 

  • Karizmeh MS, Delatolla R, Narbaitz RM (2014) Investigation of settleability of biologically produced solids and biofilm morphology in moving bed bioreactors (MBBRs). Bioprocess Biosyst Eng 37(9):1839–1848

    Article  CAS  Google Scholar 

  • Lazarova V, Bellahcen D, Manem J, Stahl DA, Rittmann BE (1999) Influence of operating conditions on population dynamics in nitrifying biofilms. Water Sci Technol 39(7):5–11

    Article  CAS  Google Scholar 

  • Li X-Y, Chu HP (2003) Membrane bioreactor for the drinking water treatment of polluted surface water supplies. Water Res 37(19):4781–4791

    Article  CAS  Google Scholar 

  • Lin Y-H (2008) Kinetics of nitrogen and carbon removal in a moving-fixed bed biofilm reactor. Appl Math Model 32(11):2360–2377

    Article  Google Scholar 

  • Liu H, Yang C, Pu W, Zhang J (2008) Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/aerobic/membrane bioreactor. Chem Eng J 140(1–3):122–129

    Article  CAS  Google Scholar 

  • Luostarinen S, Luste S, Valentin L, Rintala J (2006) Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures. Water Res 40(8):1607–1615

    Article  CAS  Google Scholar 

  • Meuler S, Paris S, Hackner T (2008) Membrane bio-reactors for decentralized wastewater treatment and reuse. Water Sci Technol 58(2):285–294

    Article  CAS  Google Scholar 

  • Ødegaard H, Rusten B, Westrum T (1994) A new moving bed biofilm reactor-applications and results. Water Sci Technol 29:157–165

    Google Scholar 

  • Oh JH, Park J, Ellis TG (2014) Septic wastewater treatment using recycled rubber particles as biofiltration media. Environ Technol 35(5):637–644

    Article  CAS  Google Scholar 

  • Persson F, Wik T, Sorensson F, Hermansson M (2002) Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter. Water Res 36(6):1439–1448

    Article  CAS  Google Scholar 

  • Richards S, Paterson E, Withers PJA, Stutter M (2016) Septic tank discharges as multi-pollutant hotspots in catchments. Science Total Environ-A 542:854–863

    Article  CAS  Google Scholar 

  • Rodgers M, Zhan X-M (2004) Biological nitrogen removal using a vertically moving biofilm system. Bioresour Technol 93(3):313–319

    Article  CAS  Google Scholar 

  • Rusten B, Siljudalen JG, Nordeidet B (1994) Upgrading to nitrogen removal with the KMT moving bed biofilm process. Water Sci Technol 29(12):185–195

    CAS  Google Scholar 

  • Sabry T (2010) Evaluation of decentralized treatment of sewage employing Upflow Septic Tank/Baffled Reactor (USBR) in developing countries. J Hazard Mater 174(1–3):500–505

    Article  CAS  Google Scholar 

  • Salvetti R, Azzellino A, Canziani R, Bonomo L (2006) Effects of temperature on tertiary nitrification in moving-bed biofilm reactors. Water Res 40(15):2981–2993

    Article  CAS  Google Scholar 

  • Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer KH (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 62(12):4641–4647

    CAS  Google Scholar 

  • Van den Akker B, Holmes M, Pearce P, Cromar NJ, Fallowfield HJ (2011) Structure of nitrifying biofilms in a high-rate trickling filter designed for potable water pre-treatment. Water Res 45(11):3489–3498

    Article  Google Scholar 

  • Vayenas DV, Pavlou S, Lyberatos G (1997) Development of a dynamic model describing nitritification and nitratification in trickling filters. Water Res 31(5):1135–1147

    Article  CAS  Google Scholar 

  • Wilhelm SR, Schiff SL, Robertson WD (1996) Biogeochemical evolution of domestic waste water in septic systems: 2. Application of conceptual model in sandy aquifers. Ground Water 34(5):853–864

    Article  CAS  Google Scholar 

  • Yu X, Qi Z, Zhang X, Yu P, Liu B, Zhang L, Fu L (2007) Nitrogen loss and oxygen paradox in full-scale biofiltration for drinking water treatment. Water Res 41(7):1455–1464

    Article  CAS  Google Scholar 

  • Zamalloa C, Arends JBA, Boon N, Verstraete W (2013) Performance of a lab-scale bio-electrochemical assisted septic tank for the anaerobic treatment of black water. New Biotechnol 30(5):573–580

    Article  CAS  Google Scholar 

  • Zhang Y, Love N, Edwards M (2009) Nitrification in drinking water systems. Crit Rev Environ Sci Technol 39(3):153–208

    Article  CAS  Google Scholar 

  • Zhang S, Wang Y, He W, Wu M, Xing M, Yang J, Gao N, Yin D (2013) Responses of biofilm characteristics to variations in temperature and NH4 +-N loading in a moving-bed biofilm reactor treating micro-polluted raw water. Bioresour Technol 131:365–373

    Article  CAS  Google Scholar 

  • Zhang S, Wang Y, He W, Wu M, Xing M, Yang J, Gao N, Pan M (2014) Impacts of temperature and nitrifying community on nitrification kinetics in a moving-bed biofilm reactor treating polluted raw water. Chem Eng J 236:242–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Qatar University Internal Grant (QUUG-CENG-CHE-14\15-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Almomani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almomani, F.A., Khraisheh, M.A.M. Treatment of septic tank effluent using moving-bed biological reactor: kinetic and biofilm morphology. Int. J. Environ. Sci. Technol. 13, 1917–1932 (2016). https://doi.org/10.1007/s13762-016-1039-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1039-7

Keywords

Navigation