Cannibalistic viruses in the aquatic environment: role of virophages in manipulating microbial communities

  • V. Marie
  • J. LinEmail author


The ecological role of viruses in aquatic environments is gaining interest due to their abundance and overall diversity. Much focus has been on bacteriophages since they were found to play an important role in the diversification and sustainment at both the micro- and macro-scale. However, the discovery of virophages coexisting with giant viruses in a diverse set of eukaryotic hosts has recently gained attention. Virophages are small double-stranded DNA viruses found parasitizing giant viruses of eukaryotes. Since the discovery of the first virophage (Sputnik) many virophage signatures have been detected from a variety of environmental samples with specific infection cycles. In addition, these parasites display important roles in equilibrating microbial biomass, nutrient cycling and population dynamics. Moreover, virophage-induced evolution between giant viruses and their hosts have also been described. Considering the ongoing discovery of virophages and their dynamics in aquatic ecosystems, this review intends to provide an update of the virophage signatures identified to date, also tending to provide insight on the mechanisms of coinfection as well as their role as agents of biodiversity and nutrient cyclers in water environments.


Virophages Giant viruses Modes of coinfection Virophage–host dynamics Viral evolution 



The authors would like to thank the National Research Foundation, South Africa for providing the Masters scholarship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Abrahão JS, Dornas FP, Silva LCF, Almeida GM, Boratto PVM, Colson P, La Scola B, Kroon EG (2014) Acanthamoeba polyphaga mimivirus and other giant viruses: an open field to outstanding discoveries. Virol J 11:120CrossRefGoogle Scholar
  2. Avrani S, Schwartz DA, Lindell D (2012) Virus–host swinging party in the oceans. Mob Genet Elem 2:88–95CrossRefGoogle Scholar
  3. Barros N, Farjalla VF, Soares MC, Melo RCN, Roland F (2010) Virus–bacterium coupling driven by both turbidity and hydrodynamics in an Amazonian Floodplain Lake. Appl Environ Microbiol 76:7194–7201CrossRefGoogle Scholar
  4. Boyer M, Azza S, Barrassi L, Klose T, Campocasso A, Pagnier I, Fournous G, Borg A, Robert C, Zhang X, Desnues C, Henrissat B, Rossmann MG, La Scola B, Raoult D (2011) Mimivirus shows dramatic genome reduction after intraamoebal culture. PNAS 108:10296–10301CrossRefGoogle Scholar
  5. Brockhurst MA, Fenton A, Roulston B, Rainey PB (2006) The impact of phages on interspecific competition in experimental populations of bacteria. BMC Ecol 6:19CrossRefGoogle Scholar
  6. Campos RK, Boratto PV, Assis FL, Aguiar ER, Silva LC, Albarnaz JD, Dornas FP, Trindade GS, Ferreira PP, Marques JT, Robert C, Raoult D, Kroon EG, La Scola B, Abrahão JS (2014) Samba virus: a novel mimivirus from a giant rain forest, the Brazilian Amazon. Virol J 11:95CrossRefGoogle Scholar
  7. Cavicchioli R (2015) Microbial ecology of Antarctic aquatic systems. Nat Rev Microbiol 13:691–706CrossRefGoogle Scholar
  8. Claverie JM, Grzela R, Lartigue A, Bernadac A, Nitsche S, Vacelet J, Ogata H, Abergel C (2009) Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges. J Invertebr Pathol 101:172–180CrossRefGoogle Scholar
  9. Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, Cheng XW, Federici BA, Van Etten JL, Koonin EV, La Scola B, Raoult D (2013) “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol 158:2517–2521CrossRefGoogle Scholar
  10. Culley AI (2011) Virophages to viromes: a report from the frontier of viral oceanography. Curr Opin Virol 1:52–57CrossRefGoogle Scholar
  11. Danovaro R, Corinaldesi C, Dell’Anno A, Fuhrman JA, Middelburg JJ, Noble RT, Suttle CA (2011) Marine viruses and global climate change. FEMS Microbiol Rev 35:993–1034CrossRefGoogle Scholar
  12. DeBruyn JM, Leigh-Bell JA, Mckay RML, Bourbonniere RA, Wilhelm SW (2004) Microbial distributions and the impact of phosphorus on bacterial activity in Lake Erie. J Great Lakes Res 30:166–183CrossRefGoogle Scholar
  13. Dennehy JJ (2012) What can phages tell us about host-pathogen coevolution? Int J Evol Biol. doi: 10.1155/2012/396165 Google Scholar
  14. Desnues C, Raoult D (2010) Inside the lifestyle of the virophage. Intervirology 53:293–303CrossRefGoogle Scholar
  15. Desnues C, Raoult D (2012) Virophages question the existence of satellites. Nat Rev Microbiol 10:234CrossRefGoogle Scholar
  16. Desnues C, La Scola B, Yutin N, Fournous G, Robert C, Azza S, Jardot P, Monteil S, Campocasso A, Koonin EV, Raoult D (2012) Provirophages and transpovirons as the diverse mobilome of giant viruses. PNAS 109:18078–18083CrossRefGoogle Scholar
  17. Durzyńska J, Goździcka-Józefiak A (2015) Viruses and cells intertwined since the dawn of evolution. Virol J 12:169CrossRefGoogle Scholar
  18. Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332:231–234CrossRefGoogle Scholar
  19. Gaia M, Pagnier I, Campocasso A, Fournous G, Raoult D, La Scola B (2013) Broad spectrum of Mimiviridae virophage allows its isolation using a mimivirus reporter. PLoS ONE 8:e61912CrossRefGoogle Scholar
  20. Gaia M, Benamar S, Boughalmi M, Pagnier I, Croce O, Colson P, Raoult D, La Scola B (2014) Zamilon, a novel virophage with Mimiviridae host specificity. PLoS ONE 9:e94923CrossRefGoogle Scholar
  21. Hartley M-A, Ronet C, Fasel N (2012) Backseat drivers: the hidden influence of microbial viruses on disease. Curr Opin Microbiol 15:1–8CrossRefGoogle Scholar
  22. Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L, Poulain J, Ferrera I et al (2013) Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. Int Soc Microbiol Ecol J 7:1678–1695Google Scholar
  23. Holt RD, Hochberg ME (1998) The coexistence of competing parasites. Part II—hyperparasitism and food chain dynamics. J Theor Biol 193:485–495CrossRefGoogle Scholar
  24. Jassim SAA, Limoges RG (2013) Impact of external forces on cyanophage–host interactions in aquatic ecosystems. World J Microbiol Biotechnol 29:1751–1762CrossRefGoogle Scholar
  25. Katzourakis A, Aswad A (2014) The origins of giant viruses, virophages and their relatives in host genomes. BMC Biol 12:51CrossRefGoogle Scholar
  26. Koonin EV, Dolja VV (2014) Virus world as an evolutionary network of viruses and capsidless selfish elements. Mol Biol Rep 78:278–303Google Scholar
  27. Koonin EV, Yutin Y (2010) Origin and evolution of eukaryotic large nucleo-cytoplasmic DNA viruses. Intervirology 53:284–292CrossRefGoogle Scholar
  28. Koskella B, Meaden S (2013) Understanding bacteriophage specificity in natural microbial communities. Viruses 5:806–823CrossRefGoogle Scholar
  29. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV (2009) New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:11–19CrossRefGoogle Scholar
  30. La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoult D (2008) The virophage as a unique parasite of the giant mimivirus. Nature 455:100–105CrossRefGoogle Scholar
  31. Levasseur A, Bekliz M, Chabrière E, Pontarotti P, La Scola B, Raoult D (2016) MIMIVIRE is a defence system in mimivirus that confers resistance to virophage. Nature. doi: 10.1038/nature17146 Google Scholar
  32. López-Bueno A, Tamames J, Velázquez D, Moya A, Quesada A, Alcamí A (2009) High diversity of the viral community from an Antarctic Lake. Science 326:858–861CrossRefGoogle Scholar
  33. Martiny JBH, Riemann L, Marston MF, Middelboe M (2014) Antagonistic coevolution of marine planktonic viruses and their hosts. Annu Rev Mar Sci 6:393–414CrossRefGoogle Scholar
  34. May RM, Hassell MP (1981) The dynamics of multiparasitoid–host interactions. American Naturalist 117:234–261CrossRefGoogle Scholar
  35. Middelboe M, Jacquet S, Weinbauer M (2008) Viruses in freshwater ecosystems: an introduction to the exploration of viruses in new aquatic habitats. Freshw Biol 53:1069–1075CrossRefGoogle Scholar
  36. Moreira D, Brochier-Armanet C (2008) Giant viruses, giant chimeras: the multiple evolutionary histories of mimivirus genes. BMC Evol Biol 8:12CrossRefGoogle Scholar
  37. Mutsafi Y, Zauberman N, Sabanay I, Minsky A (2010) Vaccinia-like cytoplasmic replication of the giant mimivirus. PNAS 107:5978–5982CrossRefGoogle Scholar
  38. Nasir A, Kim KM, Caetano-Anolles G (2012) Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol 12:156CrossRefGoogle Scholar
  39. Parola P, Renvoisé A, Botelho-Nevers E, La Scola B, Desnues C, Raoult D (2012) Acanthamoeba polyphaga mimivirus virophage seroconversion in travelers returning from Laos. Emerg Infect Dis 18(9):1500–1502CrossRefGoogle Scholar
  40. Pearson H (2008) “Virophage” suggests viruses are alive. Nature 454:677CrossRefGoogle Scholar
  41. Ram ASP, Rasconi S, Jobard M, Palesse S, Colombet J, Sime-Ngando T (2011) Study of prokaryotic viruses in freshwater lakes reveals high lytic infection rates but low abundances in a humic lake (Vassiviere, Massif Central, France). Appl Environ Microbiol 77:5610–5618CrossRefGoogle Scholar
  42. Ruiz-Saenz J, Rodas JD (2010) Viruses, virophages, and their living nature. Acta Virol 54:85–90CrossRefGoogle Scholar
  43. Samson JE, Magadán AH, Sabri M, Moineau S (2013) Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol 11:675–687CrossRefGoogle Scholar
  44. Sime-Ngando T (2014) Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front Microbiol 5:355CrossRefGoogle Scholar
  45. Slimani M, Pagnier I, Raoult D, La Scola B (2013) Amoebae as battlefields for bacteria, giant viruses, and virophages. J Virol 87:4783–4785CrossRefGoogle Scholar
  46. Sun S, La Scola B, Bowman VD, Ryan CM, Whitelegge JP, Raoult D, Rossmann MG (2010) Structural studies of the Sputnik virophage. J Virol 84:894–897CrossRefGoogle Scholar
  47. Taylor BP, Cortez MH, Weitz JS (2014) The virus of my virus is my friend: ecological effects of virophage with alternative modes of coinfection. J Theor Biol 354:124–136CrossRefGoogle Scholar
  48. Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13:19–27CrossRefGoogle Scholar
  49. Vallina SM, Follows MJ, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M (2014a) Global relationship between phytoplankton diversity and productivity in the ocean. Nat Comm 5:4299CrossRefGoogle Scholar
  50. Vallina SM, Word BA, Dutkiewicz S, Follows MJ (2014b) Maximal feeding with active prey-switching: a kill-the-winner functional response and its effect on global diversity and biogeography. Prog Oceanogr 120:93–109CrossRefGoogle Scholar
  51. Van Etten JL, Lane LC, Dunigan DD (2010) DNA viruses: the really big ones (giruses). Annu Rev Microbiol 64:83–99CrossRefGoogle Scholar
  52. Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11CrossRefGoogle Scholar
  53. Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, Hochberg ME (2013) Phage–bacteria infection networks. Trends Microbiol 21:82–91CrossRefGoogle Scholar
  54. Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R (2013) Key microbial drivers in antarctic aquatic environments. FEMS Microbiol Rev 37:303–335CrossRefGoogle Scholar
  55. Winter C, Bouvier T, Weinbauer MG, Thingstad TF (2010) Trade-offs between competition and defence specialists among unicellular planktonic organisms: the ‘killing the winner’ hypothesis revisited. Microbiol Mol Biol Rev 74:42–57CrossRefGoogle Scholar
  56. Wodarz D (2013) Evolutionary dynamics of giant viruses and their virophages. Ecol Evol 3:2103–2115CrossRefGoogle Scholar
  57. Xiao C, Kuznetsov YG, Sun S, Hafenstein SL, Kostyuchenko VA, Chipman PR, Suzan-Monti M, Raoult D, McPherson A, Rossmann MG (2009) Structural studies of the giant mimivirus. PLoS Biol 7:958–966CrossRefGoogle Scholar
  58. Yau S, Lauro FM, DeMaere MZ, Brown MV, Thomas T, Raftery MJ, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Gibson JA, Cavicchioli R (2011) Virophage control of antarctic algal host–virus dynamics. PNAS 108:6163–6168CrossRefGoogle Scholar
  59. Yutin N, Wolf YI, Raoult D, Koonin EV (2009) Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J 6:223. doi: 10.1186/1743-422X-6-223 CrossRefGoogle Scholar
  60. Yutin N, Raoult D, Koonin EV (2013) Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol J 10:158CrossRefGoogle Scholar
  61. Zhou J, Zhang W, Yan S, Xiao J, Zhang Y, Li B, Pan Y, Wang Y (2013) Diversity of virophages in metagenomic data sets. J Virol 87:4225–4236CrossRefGoogle Scholar
  62. Zhou J, Sun D, Childers A, McDermott TR, Wang Y, Liles MR (2015) Three novel virophage genomes discovered from yellowstone lake metagenomes. J Virol 89:1278–1285CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2016

Authors and Affiliations

  1. 1.School of Life SciencesUniversity of KwaZulu-Natal (Westville)DurbanSouth Africa

Personalised recommendations